基于分频段前馈补偿的并网变流器输出阻抗校正*
Frequency-dependent Feedforward Compensation for Reshaping the Output Impedance of Grid-connected Converter
-
摘要: 并网变流器是分布式发电系统中交直流接口关键设备,为解决弱电网下电网阻抗同并网变流器的交互作用所引起的宽频率范围谐波谐振及系统失稳问题,基于级联系统阻抗模型研究了传统的电网电压单位比例前馈对并网变流器输出阻抗幅相特性的影响,提出基于数字滤波器的电网电压分频段前馈补偿策略,包括减小电网电压前馈低频分量的增益和延迟,增加电网电压前馈高频分量的延迟,并给出前馈补偿回路参数的设计方法,重塑并网变流器输出阻抗为无源特性,提升了并网变流器对电网阻抗宽范围变化的适应能力,实现弱电网下并网系统宽频范围谐波谐振的抑制。仿真和试验验证了理论分析的正确性和所提电网电压分频段前馈补偿策略的有效性。Abstract: Grid-connected converter is acting as the critical AC/DC interface in distributed power generation system. Aiming at solving the harmonic resonance over the wide-frequency band and the system instability problem caused by interactions between the grid impedance and the grid-connected converter, the influence of the traditional unit grid voltage feedforward (GVF) compensation on the magnitude-phase characteristic through the cascaded impedance model is revealed. The frequency-dependent feedforward compensation strategy based on the digital filter is further proposed, which includes the reduction of the gain and the delay of the low-frequency component of the grid voltage, and the increase of the delay of the high-frequency component of the grid voltage. The design guideline of the feedforward parameters is further elaborated, which reshapes the inverter output impedance to be passive. The adaptability to the variation of the grid impedance is enhanced, and the wide-frequency band harmonics under the weak grid are also suppressed. Simulation and experimental results finally verify the correctness of the theoretical analysis and the effectiveness of the proposed frequency-dependent GVF compensation strategy.