内置式永磁同步电机的极宽调制低振噪设计*

Pole Width Modulation-based Low Vibration and Noise Design for Interior Permanent Magnet Synchronous Motor

  • 摘要: 对于整数槽内置式永磁同步电机,槽数阶电磁力是零阶振动的主要来源。为实现电机的低振噪设计,采用极宽调制技术对电机转子进行修型,抑制齿数阶电磁力。首先,推导出72槽12极内置式永磁同步电机激振力的时空分布数学模型,分析72阶电磁力来源。然后,采用极宽调制技术优化72阶电磁力,并确定最终设计方案。最后,建立电机电磁-振动-噪声的多物理场仿真模型,对电机的电磁力、模态特征、振动响应和噪声辐射进行仿真分析。通过对比优化前和优化后电机的零阶振动和噪声,验证所提方法的有效性,为内置式永磁同步电机的低振噪设计提供新的方法。

     

    Abstract: For the integer slot interior permanent magnet synchronous motor (IPMSM), slot number order force is an important source of the zeroth mode vibration. Pole width modulation technology is used to modify the rotor, restrain slot number order force, and realize the low vibration and noise design. Firstly, the mathematical model of the temporal and spatial characteristics of electromagnetic force of the 72-slot/22-pole IPMSM is deduced. Then, the source of 72nd-order electromagnetic force is analyzed. Subsequently, pole width modulation technology is used to optimize the 72nd-order electromagnetic force, and the final optimization scheme is adopted by simulated validated. Finally, the multi-physical simulation model of electromagnetic vibration and noise is established to predict the electromagnetic force, modal characteristics, vibration response and radiation noise of machine are analyzed. Vibration displacement and sound pressure level are compared between the existed and proposed machine. The results verify the effectiveness of the proposed method. A new method for low vibration and noise design for IPMSM is provided.

     

/

返回文章
返回