感应电机三矢量模型预测磁链控制

A Three-Vectors-Based Model Predictive Flux Control of Induction Motor Drives

  • 摘要: 模型预测磁链控制(MPFC)是最近才被提出来的一种新型控制方法,能够很好地解决传统模型预测转矩控制(MPTC)中权重系数选择困难的问题,因此得到了广泛的关注,但是当整个控制周期中只作用一个电压矢量时,MPFC的稳态性能较差。为了提高MPFC的稳态性能,有一些学者提出了双矢量MPFC的概念。如果在一个控制周期当中作用3个电压矢量,MPFC的稳态性能可以进一步提高,但是也会带来一系列的问题,如:矢量选择复杂、计算量较大及开关频率高等,不利于MPFC在实际当中的应用。为了解决这些问题,本文提出一种简单实用的新型三矢量MPFC,为了降低逆变器的非线性对三矢量MPFC的影响,文中基于伏秒平衡的原理,又提出一种改进型三矢量MPFC。为了比较新型三矢量MPFC的性能,引入基于空间矢量脉宽调制的MPFC(MPFC_SVM)作为对比。最终通过仿真与实验验证了提出的新型三矢量MPFC的有效性,同时也详细地比较了以上三种控制方法在相同开关频率下的控制性能。

     

    Abstract: Model predictive flux control (MPFC) has attracted wide attention, because it had been proposed to cope with the tedious weighting factor tuning work required in conventional model predictive torque control (MPTC). However, similar to MPTC, MPFC presents high torque and current ripples if only one voltage vector is applied during each control period. To improve the steady state performance of MPFC, various two-vectors-based schemes can be found in existing literature. Although better performance can be expected if three vectors are selected during one control period, the complexity would also be increased significantly, which makes its practical application difficult. To address this problem, a simple yet very effective three-vectors-based MPFC is proposed in this paper. To decrease the effect of inverter nonlinearity on three-vectors-based MPFC, this paper also proposed an improved three-vectors-based MPFC based on the theory of volt-second balance. To show superior performance of three-vectors-based MPFC, MPFC based on space vector pulse width modulation is introduced as a comparison. Finally, the effectiveness of the novel three-vectors-based MPFC is verified by the simulation and experiment testes. A detailed performance comparison for the three control methods with the same switching frequency is also presented.

     

/

返回文章
返回