Review of Modeling and Analysis of Parasitics in Power Electronic Converters
-
Graphical Abstract
-
Abstract
The generation of power semiconductor devices defines a generation of power electronic converters. The efficiency and switching speed of power devices continue to improve, leading to higher converter operating frequencies and a continuous increase in power density. In particular, the emergence and widespread application of wide-bandgap power devices, such as silicon carbide and gallium nitride, have accelerated the process of high-frequency converter operations, significantly improving the power density of converters, which still have considerable room for improvement. One significant change brought about by high-frequency operation of converters is the increased impact of parasitics on circuit operation. With the significant increase in the system switching frequency and the dv/dt and di/dt of device switching, parasitics have a greater influence on circuit operation. Over the past decade, several studies on the analysis and modeling of parasitics have been published for various devices in converters, such as transformers, inductors, capacitors, and power devices; however, there is currently a lack of a comprehensive review to summarize the above research. A detailed summary of parasitics in power electronic converters is included, providing a systematic understanding of past work and future prospects.
-
-