锂离子电池全寿命周期个性化退役与评价方法*
Personalized Retiring and Assessing Methods for Lithium-ion Batteries within the Full Lifespan
通讯作者: 商云龙,男,1984年生,博士,教授。主要研究方向为储能电池安全高效管理与控制。E-mail:yshang@sdu.edu.cn
收稿日期: 2023-12-12 修回日期: 2024-01-28
基金资助: |
|
Received: 2023-12-12 Revised: 2024-01-28
作者简介 About authors
朱昱豪,男,1996年生,博士研究生。主要研究方向为锂离子电池状态估计与寿命预测。E-mail:
汪腾,男,1999年生,硕士研究生。主要研究方向为锂离子电池健康状态估计。E-mail:
顾鑫,男,1996年生,博士研究生。主要研究方向为锂离子电池热失控机理分析与智能预警。E-mail:
侯林飞,男,1998年生,博士研究生。主要研究方向为锂离子电池极速充电。E-mail:
锂离子电池(Lithium-ion batteries, LIBs)广泛应用于储能系统(Energy storage system, ESS)、电动汽车(Electric vehicles, EVs)等领域。然而,电池在运行过程中容量会逐渐下降直至退役。传统方法以80%健康状态(State of health, SOH)作为退役标准,未考虑电池实际衰退速率,不仅不能充分利用健康电池,而且难以有效保障非健康电池的安全性。同时,SOH相等但电池老化特性和衰退速度不一定相同。仅以SOH评价无法准确反映电池老化差异。为此,提出一种锂离子电池全寿命周期个性化退役标准和老化评价方法。以容量衰退梯度和SOH为特征,首次定义全新退役指标(Index of decommissioning, IoD),计算IoD在80%SOH下的分布,获取退役阈值,并以此阈值为标准定义电池退役时刻。提出一种全新的健康状态评价指标—电池容量跳水度(Terminal diving rate, TDR),评价电池在使用过程中出现的非线性老化现象。通过在MIT公开数据集上验证,所提方法计算简单、鲁棒性强,能够实现电池个性化退役,更有效地评估电池老化差异,提高电池利用率,保障使用安全。
关键词:
Lithium-ion batteries(LIBs) have been widely used in energy storage system(ESS), electric vehicles(EVs) and other fields. However, the capacity will gradually decrease during the battery utilization until it is retired. 80% state of health(SOH) is usually taken as the retiring standard in traditional methods, which not considers the actual degradation rate. Not only can not make full use of the healthy batteries, but also make it difficult to efficiently ensure the safety of unhealthy batteries. Meanwhile, SOH is equal, but battery aging characteristics and rate are not necessarily the same. The SOH is used alone to evaluate to make the accurate reflection of aging differences impossible. Therefore, a personalized retiring standard and aging assessment methods are proposed in this paper, which aim to the LIBs within the full lifespan. The new index of decommissioning(IoD) is firstly defined, which is characterized by the capacity degradation gradient and current SOH. The distribution of IoD under 80% SOH is calculated to obtain the retired threshold, which is used as the standard to define the battery retirement. Meanwhile, the brand-new health assessment index - capacity terminal diving rate(TDR) is proposed to evaluate the nonlinear aging phenomena that happens during the battery use. Through the verification on the MIT public dataset, the proposed method has the advantages of simple calculation and strong robustness. It can realize the battery personalized retirement and more effective assessment in aging differences, leading to the higher utilization rate and safer use.
Keywords:
本文引用格式
朱昱豪, 汪腾, 顾鑫, 侯林飞, 商云龙.
ZHU Yuhao, WANG Teng, GU Xin, HOU Linfei, SHANG Yunlong.
1 引言
锂离子电池老化机理复杂,容量衰退具有强非线性和不确定性[9-10]。当经历长时间的充放电循环或储存时,电池通常表现出向更快速容量衰减趋势的转变。容量衰退一般分为两个阶段:第一阶段表现为容量衰退梯度变化较小且SOH下降缓慢,第二阶段容量衰退梯度逐渐变大,SOH急剧下降[11]。传统“一刀切”式的寿命终点识别方法以80%SOH为标准,未考虑电池衰退速率,局限性较大。同时,传统以SOH评估电池的方法也存在一定弊端。SOH相等但电池老化特性和衰退速度不一定相同,无法合理评价电池老化。如何个性化识别电池退役点并基于全新指标精准合理评价电池老化,是本文要解决的关键科学难题。这一问题的解决将有助于电池安全高效利用,进一步推动相关产业可持续发展。
不少学者针对电池退役点识别、容量“跳水”等展开了大量研究,但目前均以80%SOH作为电池寿命终点,即退役点;同时仍缺乏对电池老化与衰退精准合理的评价指标与方法。文献[12]发现锂离子电池容量呈指数级下降,提出了一种基于指数模型和粒子滤波(Particle filter, PF)的容量预测方法。文献[13]采用四阶多项式内阻增长模型预测剩余使用寿命,过程较为复杂。文献[14]对电池恒功率充放电,获取中值电压和循环次数关系并计算斜率,以此识别“跳水”点并评价电池老化,但中值电压不易测量,受容量和外界环境影响较大。文献[15]提取了四个能有效反映电池老化状态的特征,并将其作为高斯过程回归(Gaussian process regression, GPR)模型的输入。然而,模型的建立需要复杂的计算,且实时性较差。文献[16]提出了一种两阶段老化轨迹预测方法,该方法利用迁移学习实现了准确的容量预测。文献[17]提出了非线性老化状态(State of nonlinear aging, SONA),通过计算最大非线性老化程度,确定了容量退化拐点,解释电池使用过程中的非老化现象。文献[18]以80%SOH作为电池寿命终点,根据衰退曲线弯曲程度确定退化特征夹角,并与夹角阈值比较,判断容量是否发生跳水,进一步评价电池衰减程度与老化状态。文献[19]根据容量保持率的斜率值,计算斜率值与斜率基准值的比率。根据比率与相应阈值区间,判断电池老化状态与安全风险等级,但该方法阈值区间的选取有一定主观性。文献[20]提出了一种基于几何特征的电池老化评价方法。计算容量衰退点与老化参考点的偏离程度,比较偏离最大值与阈值,判断容量是否发生跳水,并根据跳水点和偏离程度评价电池老化程度。
综上,传统寿命退役以80%SOH为标准,局限性大,不仅不能充分利用健康电池,而且难以有效保障非健康电池的安全性。传统基于单一SOH、容量夹角或斜率等特征评价电池衰退程度和老化状态的方法,无法准确反映电池老化差异。为了解决上述问题,本文提出了锂离子电池个性化退役标准与容量跳水度定义方法,以实现电池高效使用和老化准确评价。首先,根据电池的容量衰退曲线,计算容量衰退梯度;然后,结合电池健康状态SOH获取全新个性化退役指标IoD,寻找合适的IoD阈值,并根据该阈值标准化定义电池退役点;最后,定义并计算容量跳水度(Terminal diving rate, TDR),并以此评价电池衰退程度和老化状态。公开数据集上的验证结果表明,本文所提方法能够实现电池个性化退役,更加准确地反映电池老化差异,保证系统安全高效运行。
2 退役点个性化定义
2.1 传统退役标准
传统方法以80%SOH作为退役标准,公式如下
式中,Qnow代表当前电池容量;Qini代表电池初始容量。
由式(1)可知,该“一刀切”式标准忽视了电池衰退特性。当电池SOH较高,但容量衰退梯度很大时,按照80%SOH退役,其安全性无法保证,可考虑提前退役;当电池SOH较低,但容量衰退梯度较小时,还有一定利用价值,按80%SOH退役,不能充分利用电池,可考虑继续使用,推迟退役时间。因此,该标准无法充分利用健康电池,且难以有效保障非健康电池的安全。
2.2 个性化退役标准
容量衰退梯度能够反映电池衰退过程中容量变化的相对速率。根据电池的容量衰退曲线,将上一循环的容量减去当前循环的容量,得到容量衰退梯度
式中,SOHi表示当前循环的SOH值。
随着循环次数的增加,容量衰退梯度会逐渐增大,对应的SOH值会逐渐减小。为了保证SOH变化与容量衰退梯度有相同量级的变化速率,分子取SOH的平方,即SOH2。该指标综合考虑了SOH和容量衰退速率,IoD随着循环次数的变大而逐渐减小,能够多角度反映电池老化状态。锂离子电池退役电池标准化识别流程图如图1所示,具体步骤如下所示。
图1
步骤1:对锂离子电池进行三次容量测试,取三次测量的平均值作为电池的额定容量。
步骤2:对电池进行循环充放电试验,获取每次充放电循环对应的电池容量、电流、电压、温度等数据。
步骤3:当电池可用容量低于额定容量的50%时,停止充放电循环试验,并记录此时的循环次数。
步骤4:对原始数据进行离群值消除、平滑滤波等处理,绘制容量衰退随循环次数变化的曲线。
步骤5:根据容量衰退曲线计算每次循环对应的SOH以及容量衰退梯度,并根据式(2)得到IoD曲线。
步骤6:根据IoD曲线获取80%SOH时IoD分布,进一步得到阈值IoDTHR,并通过IoDTHR与容量的关系,标准化识别电池的退役点。
3 基于容量跳水度的老化评价
SOH相同的电池在衰退上可能表现出不同的老化路径和趋势。传统方法仅通过SOH的大小评价电池衰退程度和老化状态,无法准确反映电池老化差异。为了解决该问题,本文创新地定义了容量跳水度TDR,如图2所示,并以此准确评价电池老化。TDR的具体计算过程如下所示。
图2
步骤1:连接容量衰退起始点A和终止点B,形成一条线性老化基准线AB。
步骤2:连接容量衰退曲线上的每一点Ki与寿命终点B,形成线段KiB,并将K点投影至x轴得投影点Mi,连接KM,形成容量跳水三角形ΔKBM。
步骤3:将∠KBM定义为容量跳水角β,将容量跳水角β的正切值定义为容量的跳水度TDR,如式(3)所示
式中,TDR为容量跳水度;β为容量跳水角。
TDR表示电池在单位循环期间容量衰退的程度,也在一定程度上反映了电池容量跳水机理和特性。TDR越大,表示电池容量衰退和老化速度越快,非线性程度越强。
4 试验验证
图3
图4
4.1 个性化退役标准
图5
图6
由图6分析可知,在80%SOH条件下IoD符合Gamma分布,如式(4)所示
式中,α为形状参数(Shape parameter);β为逆尺度参数(Inverse scale parameter)。
图7
图8
4.2 基于跳水度的老化评价
以MIT数据集中的41号和42号电池为例,两电池初始容量大致相同,寿命终点也相同。将SOH和循环次数归一化至[0, 1],如图9所示。
图9
图10
两个电池的容量衰退点分别为K1 i和K2 i,垂线段分别为
图11
同时,同一电池随着循环次数增加,TDR逐渐变大,曲线在某一时刻的斜率到达最大,此时表现为电池跳水度的变化速度最快,可认为电池已经到达寿命转折点,并进入衰退末期。转折点过后,电池安全性变差,容量衰退进一步加剧,且随着使用次数的增加,容量衰退线性程度增强,在寿命终止点B附近,线性程度最强,此时的TDR最大且趋于稳定。
图12
5 结论
本文提出了一种全新的电池退役指标IoD,颠覆了传统以80%SOH为退役标准的“一刀切”方法,个性化定义电池退役时刻。同时,提出了一种电池健康状态评价指标TDR,更准确有效地评估电池老化差异。通过MIT数据集进行了验证,可以得到如下结论。
(1) 所提出的全新退役指标IoD综合考虑了容量衰退速率和SOH,能够实现电池的个性化退役,保障电池安全充分利用。
(2) 跳水度TDR能够准确反映电池老化差异与衰退速率,计算结果稳定,鲁棒性强,能够为电池剩余价值评估和梯次利用提供指导。
参考文献
乘用车和商用车场景下电动汽车与燃油车技术路线对比分析
[J].
Comparative analysis of EV and ICE vehicles in passenger and commercial vehicle scenarios
[J].
面向“双碳”战略目标的锂离子电池生命周期评价:框架、方法与进展
[J].
DOI:10.3901/JME.2022.22.003
[本文引用: 1]
在国家“双碳”重大战略驱动下,锂离子电池在迎来了重大发展机遇的同时,它的全生命周期碳足迹追踪与环境指标评价成为研究热点,在碳排放计算及减碳措施方面遇到严峻挑战。首先,对全生命周期评价的基本框架、基本方法、评价指标等基础共性问题进行简要概述。然后,从锂离子电池可持续发展出发,提出从“摇篮”到“摇篮”的全生命周期闭环评价路线,对电池全生命周期内(包括电池生产、电池使用、梯次利用、电池回收与再制造等环节)各阶段碳排放计算的研究现状与进展进行详细综述,总结各阶段潜在的研究热点与难点,提出一种“技术-生态-价值”综合评价框架。在此基础上,对锂离子电池生命周期价值评价存在的机遇与挑战进行讨论,对资源风险与供应链风险进行分析与梳理。最后,总结与展望了能源脱碳、体系创新、智能制造、优化管理、材料回收、碳捕集等六大潜在的锂离子电池全生命周期减碳措施。
Life cycle assessment of lithium-ion batteries for carbon-peaking and carbon-neutrality:Framework,methods,and progress
[J].
DOI:10.3901/JME.2022.22.003
[本文引用: 1]
Driven by the Carbon-peaking and Carbon-neutrality strategic goals, lithium-ion batteries usher in significant development opportunities. Meanwhile, it has become a research hotspot for tracking the life cycle carbon footprint and environmental indicators assessment and faced severe challenges in carbon emission calculation and reduction measures. First, the basic framework, methods,evaluation indicators, and other common problems of the life cycle assessment are briefly summarized. Then, a whole life cycle closed-loop assessment route from "cradle" to "cradle" is proposed for the sustainable development of lithium-ion batteries. The research progress of carbon emission calculation at all stages of the battery life cycle(including battery production, battery use,echelon utilization, battery recycling, and remanufacture) is summarized in detail, the potential research hotspots and difficulties are generalized, and a comprehensive evaluation framework of "Technology-Ecology-Value" is proposed. The opportunities and challenges in lithium-ion batteries' life cycle value assessment are discussed, and the resource and supply chain risks are analyzed.Finally, six potential carbon reduction measures for the whole life cycle of lithium-ion batteries are summarized and prospected, such as energy decarbonization, system innovation, intelligent manufacturing, optimization management, material recovery, and carbon capture.
动力电池梯次利用储能系统电热安全研究现状及展望
[J].
Status and prospect of safety studies of cascade power battery energy storage system
[J].
基于大数据的动力锂电池可靠性关键技术研究综述
[J].
DOI:10.19799/j.cnki.2095-4239.2023.0316
[本文引用: 1]
锂离子电池作为电动汽车的主流储能元件,其可靠性下降将导致电动汽车性能异常退化或故障频发,甚至引发安全事故,发展先进的电池故障诊断与健康状态预估技术已成为动力锂电池可靠性领域的研究热点,而大数据与电动汽车的深度融合为电池可靠性关键技术发展提供了新思路。因此,本文首先介绍新能源汽车大数据平台的数据特点与数据清洗方法,简要回顾了大数据背景下可靠性关键技术在电动汽车与大数据平台的应用现状。然后围绕动力锂电池可靠性关键技术中电池故障诊断与健康状态预估研究,以数据驱动模型为核心,整理了基于大数据的电池故障诊断和健康状态预估的研究现状与方法,分析了电池故障诊断中基于机器学习、统计学、信号学、融合模型的优势与不足;对电池健康预估中基于历史运行数据、增量容量分析法提取特征的理论基础与电池健康预估模型进行综述。最后总结了当前研究在数据清洗、电池故障诊断和健康状态预估方面的局限性与面临的挑战,展望动力锂电池可靠性关键技术的未来发展方向。
Review of key technology research on the reliability of power lithium batteries based on big data
[J].
DOI:10.19799/j.cnki.2095-4239.2023.0316
[本文引用: 1]
Lithium-ion batteries are the mainstream energy storage component for electric vehicles. The reduced reliability of lithium-ion batteries leads to abnormal performance degradation or frequent failures for electric vehicles, resulting in accidents that threaten safety. The study of battery fault diagnosis and the state of health estimation technology has become a research hotspot in the field of lithium-ion battery reliability. The deep integration of big data and electric vehicles has provided new insights into the development of key technologies for improving the reliability of lithium-ion batteries. Herein, the data characteristics of the big data platform for new energy vehicles and the data cleaning methods they utilize are first introduced. The application of key reliability technologies based on the findings from big data in electric vehicles and big data platforms is briefly reviewed. Furthermore, the previous research on battery fault diagnosis and state of health estimation analyzing the reliability of lithium-ion batteries is reviewed. Considering a data-driven model as the core method of inquiry, the research status and methods used to analyze big data pertaining to the fault diagnosis and state of health estimation of lithium-ion batteries are discussed. The advantages and disadvantages of machine learning, statistics, signaling, and fusion models in battery fault diagnosis are discussed. The theoretical basis for extracting features based on historical operating data and incremental capacity analysis is reviewed, and the battery state of health estimation models are sorted appropriately. Finally, the limitations and challenges of the current research in data cleaning, fault diagnosis, and health status prediction of lithium-ion batteries are summarized. Thus, this paper provides the future direction for the development of key reliability technologies for estimating the reliability of lithium-ion batteries.
锂离子电池储能安全管理中的机器学习方法综述
[J].
Review of machine learning for safety management of li-ion battery energy storage
[J].
基于改进最小二乘支持向量机的锂离子电池健康状态快速估计方法
[J].
Fast estimating the state of health of lithium-ion batteries based on improved least squares support vector machine
[J].
锂离子电池健康状态估计方法研究综述
[J].
Review of state-of-health estimation methods for lithium-ion battery
[J].
DOI:10.13234/j.issn.2095-2805.2022.1.126
[本文引用: 1]
Battery management system is an important guarantee for the efficient and safe operation of lithium-ion batteries, in which the battery state estimation plays an important role. The state-of-health(SOH) is one of the important indicators for the state estimation of lithium-ion batteries. In this paper, the definition and estimation methods for the SOH of lithium-ion batteries are reviewed through the summary of related literatures in recent years, and the existing estimation methods are classified and described. Finally, aimed at the shortcomings of the existing estimation methods, the direction of improvement in the future is put forward.
A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery
[J].DOI:10.1109/TIE.41 URL [本文引用: 1]
锂离子电池在不同区间下的衰退影响因素分析及任意区间的老化趋势预测
[J].
Analysis of influencing factors of degradation under different interval stress and prediction of aging trend in any interval for lithium-ion battery
[J].
基于数据-模型驱动的锂离子电池健康状态估计
[J].
Research on health assessment method of lithium-ion battery based on bata-model hybrid drive
[J].
Remaining useful life prediction for lithium-ion batteries based on exponential model and particle filter
[J].
State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models
[J].DOI:10.1109/TTE.2017.2776558 URL [本文引用: 1]
A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve
[J].
Two-stage aging trajectory prediction of LFP lithium-ion battery based on transfer learning with the cycle life prediction
[J].DOI:10.1016/j.geits.2022.100008 URL [本文引用: 1]
Nonlinear health evaluation for lithium-ion battery within full-lifespan
[J].
/
〈 |
|
〉 |
