电气工程学报, 2023, 18(2): 1-8 doi: 10.11985/2023.02.001

电机与电器

一种改进的同步磁阻电机无模型预测电流控制*

石国航,1, 张永昌,2, 杨海涛,1

1.电力电子与电气传动北京市工程研究中心(北方工业大学) 北京 100144

2.华北电力大学电气与电子工程学院 北京 102206

An Improved Model-free Predictive Current Control for Synchronous Reluctance Motor Drives

SHI Guohang,1, ZHANG Yongchang,2, YANG Haitao,1

1. Power Electronics and Motor Drive Engineering Research Center of Beijing (North China University of Technology), Beijing 100144

2. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206

收稿日期: 2021-12-27   修回日期: 2022-04-15  

基金资助: 国家自然科学基金资助项目(52077002)

Received: 2021-12-27   Revised: 2022-04-15  

作者简介 About authors

石国航,女,1997年生,硕士研究生。主要研究方向为同步磁阻电机控制。E-mail:hope9456@163.com

张永昌,男,1982年生,教授,博士研究生导师。主要研究方向为模型预测控制在电力电子与电机控制中的应用。E-mail:zhangdavid37@gmail.com

杨海涛,男,1987年生,副教授,硕士研究生导师。主要研究方向为异步电机模型预测控制。E-mail:yhtseaky@gmail.com

摘要

无模型预测电流控制(Model-free predictive current control, MFPCC)由于本质上对系统内外扰动具有鲁棒性,在电机驱动领域得到广泛的研究,能够实现同步磁阻电机(Synchronous reluctance motor, SynRM)的高性能控制。传统的MFPCC方法把各时刻电压矢量对应的电流差分存储在查找表(Lookup table, LUT)中,进而预测下一时刻的最优电压矢量,但存在电流差分更新停滞和稳态性能不理想的问题。针对这些问题,提出一种改进的MFPCC方法,将电机模型用超局部模型表示,通过在线估计增益项和扰动项来及时更新LUT,解决了电流差分更新停滞的问题。另外利用扩展的有限状态集,得到更精确的电压矢量,改善了系统稳态性能。最后将所提方法与传统的MFPCC方法进行对比,仿真和试验结果表明该方法可以有效解决电流更新停滞的问题,并在全速范围内具有良好的动静态性能。

关键词: 同步磁阻电机; 无模型预测控制; 超局部模型; 扩展有限状态集

Abstract

Model-free predictive current control(MFPCC) has been widely studied in the field of motor drive because of its intrinsic robustness to internal and external disturbances of the system, and can achieve high performance control of synchronous reluctance motor(SynRM). The traditional MFPCC method stores the current difference corresponding to the voltage vector at each time in the lookup table(LUT), and then predicts the optimal voltage vector at the next time, but there are problems of current difference update stagnation and unsatisfactory steady-state performance. To solve these problems, an improved MFPCC method is proposed. The motor model is expressed as an ultra-local model, and the LUT is updated timely by estimating the gain term and disturbance term online, which solves the current differential update stagnation problem. In addition, a more accurate voltage vector is obtained by using the extended finite state set to improve the steady-state performance. Finally, the proposed method is compared with the traditional MFPCC method, and the simulation and experimental results show that the proposed method effectively solves the problem of current update stagnation, and has good dynamic and static performance in the full speed range.

Keywords: Synchronous reluctance motor; model-free predictive control; ultra-local model; extended finite state set

PDF (500KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

石国航, 张永昌, 杨海涛. 一种改进的同步磁阻电机无模型预测电流控制*[J]. 电气工程学报, 2023, 18(2): 1-8 doi:10.11985/2023.02.001

SHI Guohang, ZHANG Yongchang, YANG Haitao. An Improved Model-free Predictive Current Control for Synchronous Reluctance Motor Drives[J]. Chinese Journal of Electrical Engineering, 2023, 18(2): 1-8 doi:10.11985/2023.02.001

1 引言

同步磁阻电机(Synchronous reluctance motor, SynRM)由于其转子结构简单、成本低、调速范围广的优点在工业传动和电动汽车中得到广泛应用[1]。SynRM驱动的控制方法有磁场定向控制(Field oriented control, FOC)[2-3]、直接转矩控制(Direct torque control, DTC)[4]和模型预测控制(Model predictive control, MPC)[5-10]等。在SynRM驱动控制中,为简化系统描述,常假设电机参数固定,不考虑电感磁饱和,而在实际运行工况中,受主磁路饱和与交叉饱和的影响,电机参数并非定值,严重影响电机的高性能控制[11-12]。对电机参数进行离线或在线辨识能够减少参数不匹配的影响,但存在计算量大、精确性以及稳定性低的问题[13-14]。文献[15]研究了在线电感自适应算法,然而在线多参数识别存在秩不足的问题,因此可能需要额外的信号注入来达到满秩条件。此外,由于逆变器的非线性和不同参数之间的耦合效应,在低速或小电流工况下难以实现良好的精度。为了获得较好的控制性能,现有文献提出利用扰动观测器的方法来观察由参数误差引起的扰动项并进行补偿[16-17]。文献[16]在基于连续时间的预测控制方法中增加了扰动观测器,当电机参数发生变化或外部干扰时,电机驱动仍能保持良好的控制性能。文献[17]则使用龙贝格观测器来估计下一个控制周期的定子电流和电机参数失配引起的扰动。现有文献中还提出了自适应互补滑模控制[18]和鲁棒预测电流控制[19]等控制策略来抑制参数摄动和外部电压扰动的负面影响。然而,这些方法需要较大的计算量,并且其性能取决于观测器参数的设计和调整,这增加了控制器的设计工作。

针对这种参数不确定性的非线性系统,有学者提出无模型预测电流控制(Model-free predictive current control, MFPCC)方法,基于电流测量和计算的电流差分来预测未来的定子电流,但该方法对电机参数变化和反电动势不敏感[20]。传统的MFPCC在一个开关周期内,采用一维查找表(1D-LUT)来存储由逆变器提供的所有基本电压矢量的电流差分,存储的电流差分在线更新,用于MFPCC的电流预测[20],但是要求在一个控制周期内对电流进行两次采样,这增加了硬件采样次数。文献[21]提出在一个控制周期内只需要进行一次电流采样的改进MFPCC,降低了对硬件检测的要求。MFPCC的一个关键参数是LUT的更新频率。如果频率过低,某一特定电压矢量引起的电流差分在较长时间内没有更新,存储的电流差分信息是不可靠的,会影响电流预测精度,长时间的更新停滞甚至会影响系统的稳定性[22]。为了解决这个问题,文献[22]提出了一种简单的提高更新频率的方法,对电流差分LUT施加一个较小的刷新频率,如果在预定义的时间周期内没有施加某个电压矢量,它将被强制施加到之后的控制周期。这在一定程度上解决了电流差分更新停滞的问题,但忽略了电压矢量最优检测,以增加电流纹波为代价来获取更新信息。文献[23]采用与最新的三个基本电压矢量对应的电流差分来更新其他电压矢量的电流差分,需要一个序列识别算法和更新规则,将210个可能的向量组合分成6组,但这大大增加了算法的复杂度,并且只有当有三个不同的电压矢量时,才能激活此更新机制。

另外,FLIESS等[24]在2009年提出基于超局部模型的MFPCC,基于系统短时间内的输入和输出数据建立超局部模型,其中系统的不确定项可以通过微分代数方法[25-27]或扩展状态观测器[28-29]得到。然而,在超局部模型中系统输入的增益是假定已知的或基于经验程序获得的,调优工作不可避免。

为获得更精确的电压矢量,文献[30]提出扩展电压矢量方案,通过调整逆变器的开关切换状态扩展电压矢量,可以获取更多的候选电压矢量,明显加快了响应速度,减小了电流纹波,但其还是基于MPC方法,未在MFPCC上应用。

本文提出了一种改进的MFPCC方法,该方法用超局部模型代替了SynRM的精确模型,与前文中的无模型不同,它是通过使用当前和过去的电流采样信息,在每个控制周期内对系统输入增益和系统的不确定项进行估计,重构所有电流差分,实现LUT的快速更新;同时构建由8个基本电压矢量和12个扩展电压矢量组成的20个电压矢量,用于目标函数计算比较,实现电流误差最小化。最后,本文将该方法与传统的MFPCC方法进行了对比,通过仿真和试验分析验证了该方法在全速范围内均具有良好的动静态性能,有效解决了电流更新停滞的问题。

2 传统无模型预测电流控制

αβ坐标系下,建立SynRM的超局部数学模型为[31]

disdt=F+αus

式中,us为定子电压矢量;is为定子电流矢量;F代表系统已知的和未知的部分;α为系统输入的比例系数,是一个常数值,通常根据实际系统经试验调试得到。超局部模型一般需要较高的采样率,从而尽可能地保证超局部模型与实际系统模型近似等效。所以为了提高控制器的性能,必须保证F在短时间内的实时更新。基于以上特点,超局部模型保证了无模型控制器结构简单、整定参数少等优点。

对式(1)进行离散化,得到

i(k+1)=i(k)+Ts(αus(k)+F(k))

式中,i(k)i(k+1)分别是k(k+1)时刻的定子电流;Ts是采样周期;us(k)k时刻输出到逆变器的电压矢量。

在传统的MFPCC中,假设电流差分Δis(k)=is(k)is(k1)仅与施加的电压矢量us(k)有关,将其储存在LUT中并在每个采样时刻进行更新,考虑延时补偿,通过式(3)预测电压矢量作用时刻对应的定子电流

is(k+2)=is(k)+Δis(k)us(k)+Δis(k+1)ux(k+1)

式中,Δis(k)us(k)表示储存的与us(k)相关的电流差分;ux(k+1)表示从(k+1)时刻应用到(k+2)时刻的候选电压矢量。

定义目标函数为

g=isrefis(k+2)

式中,isref=(idref+jiqref)exp(jθe)iqref由速度外环通过PI控制器得到;idref采用idref=iqref最大转矩电流比(Maximum torque per ampere, MTPA)控制获得。需要注意的是,受电流极限圆的限制,isref必须进行限幅。

将式(3)得到的(k+2)时刻电流值is(k+2)代入式(4),计算并选择使目标函数值最小的电压矢量作为最优的电压矢量,控制逆变器输出,可实现SynRM的无模型预测电流控制。

然而,传统的MFPCC存在长期应用同一个电压矢量的问题,与其他电压矢量对应的电流差分不能及时更新,导致预测性能的降低;根据传统的MFPCC的原理,式(1)中的F部分被忽略了,然而在电机高速运行的情况下,F的变化不可忽略,否则将影响预测电流的准确性;另外传统的MFPCC在一个控制周期内只应用一个电压矢量,因此其稳态性能不理想,需要进一步改善。

3 改进无模型预测电流控制

针对传统MFPCC存在的问题,本文提出了一种改进的能快速更新电流差分的MFPCC方法,控制框图如图1所示。

图1

图1   改进的同步磁阻电机MFPCC框图


首先,考虑了传统的MFPCC中忽略的F部分,在线估计SynRM模型中的αF部分。

由式(1)可知,k时刻和k1时刻的电流差分分别为

Δis(k)=Ts(αus(k1)+F(k))
Δis(k1)=Ts(αus(k2)+F(k1))

在足够高的采样频率下,由于电磁时间常数远小于机械时间常数,假设F(k)=F(k1)

由以上两式联立求得

α=Δis(k)Δis(k1)Ts(us(k1)us(k2))

将式(7)代入式(5)可以求得

F=Δis(k)Tsαus(k1)

由此可得,不同于us(k1)us(k2)的其他电压矢量对应的电流差分为

Δis(k)ux=F(k)+αux

与传统的MFPCC相比,只要us(k1)us(k2)不相等,提出的方法就会在每个控制周期内计算并更新所有的电压矢量对应的电流差分,有效地解决了电流差分更新停滞的问题。

其次,通过调整逆变器的开关切换状态,调制两个相邻的基本电压矢量或一个基本电压矢量和一个固定占空比为0.5的零矢量来构建扩展状态集。扩展电压矢量结果如图2所示,整个坐标系由6个扇区组成,包含20个电压矢量。更多的候选电压矢量可以在不恶化更新停滞的情况下改善稳态性能。

图2

图2   扩展电压矢量图


最后,将得到的电流差分信息代入式(3)计算出预测电流值,通过最小化目标函数式(4)来选择最优电压矢量,控制逆变器输出,实现SynRM的高性能控制。

4 仿真与试验结果

4.1 仿真结果

为了验证提出的MFPCC的有效性,利用Matlab对所提方法进行了仿真,并将其与传统MFPCC进行了对比。仿真参数如表1所示,控制系统的采样频率为10 kHz,考虑一拍延时补偿,仿真结果如图3图4所示。

表1   仿真和试验参数

参数数值
直流母线电压Udc/V540
额定功率Pn/kW2.2
额定电压Un/V380
额定频率fn/Hz50
极对数Np2
d轴电感Ld/mH196.2
q轴电感Lq/mH89.25
定子电阻Rs2.532
额定转矩Tn/(N·m)14

新窗口打开| 下载CSV


图3

图3   传统MFPCC的仿真结果


图4

图4   改进MFPCC的仿真结果


图3图4中,从上到下的波形依次为转速、q轴电流、d轴电流以及定子电流is。仿真时,电机在空载的情况下,从零速加速至750 r/min稳定运行,0.2 s时转速给定阶跃至额定转速1 500 r/min,0.4 s时突加负载,0.8 s时负载减为0。

图3图4所示波形可以看出,在转速阶跃时所提的方法可以快速、准确地跟踪参考值,表现出良好的动态性能,响应速度与传统MFPCC几乎一致。在0.4 s突加负载后,转速没有明显跌落,0.8 s突减负载后也能迅速响应,说明系统抗干扰能力良好。在稳态性能上,提出的MFPCC比传统MFPCC的q轴电流纹波明显减小,对定子电流进行了THD量化分析,传统MFPCC与改进MFPCC的定子电流THD分别为3.77%、2.14%,表明所提方法的稳态性能优于传统的方法。

4.2 试验结果

在两电平逆变器驱动的同步磁阻电机试验平台上进行了试验验证,试验平台如图5所示。试验采用表1中的参数。定子电流由电流探头直接测量,其他内部变量均通过板载DA转换器在数字示波器上显示。图6~9中从上到下的示波器通道显示的依次为电机转速、q轴电流参考值、q轴电流实际值以及电机A相定子电流。

图5

图5   两电平逆变器同步磁阻电机试验平台


图6

图6   1 500 r/min带载稳态试验结果


图7

图7   A相电流THD


图8

图8   1 500 r/min时正反转动态试验结果


图9

图9   1 500 r/min时突加载动态试验结果


图6为所提方法在电机运行在1 500 r/min并带额定负载稳态时与传统方法的对比试验波形。对于传统的MFPCC方法,q轴电流存在较大误差,定子电流严重畸变。这表明传统的MFPCC方法由于无法快速在线更新各个电压矢量对应的电流差分,在高速运行时表现不佳。所提MFPCC方法能够快速更新电流差分,在高速时有着较好的带载运行性能,定子电流中谐波较少,稳态性能较好。

图7给出对A相电流进行THD的量化分析,传统MFPCC的A相电流THD为15.400 4%,而改进MFPCC的A相电流THD为8.580 6%。这表明改进MFPCC的稳态性能优于传统MFPCC,验证了提出方法的有效性。

图8为基于传统MFPCC和基于改进MFPCC的电机运行在额定转速1 500 r/min时的正反转试验波形。从图8可以看出,两种方法在电机反转时都能够保持平稳切换,动态响应都非常迅速,但所提方法稳态性能更好。

图9为所提方法在电机运行在1 500 r/min稳态突加额定负载时与传统方法的对比试验波形。如图9所示,电机在稳定运行时受突加负载影响,转速稍有下降,但能迅速、准确地跟踪上参考值,并且改进的MFPCC动态过程更加迅速,这表明所提方法抗扰动性更好。

5 结论

本文提出了一种改进的同步磁阻电机无模型电流控制方法,该方法计算简单,不使用任何电机参数,仅利用前两个控制周期的定子电压和电流差分信息在线估计Fα,保证了存储电流差分的LUT可以及时更新,从而有效解决了传统方法存在的电流更新停滞的问题。此外,与传统的在一个控制周期内只使用一个电压矢量的MFPCC方法相比,利用扩展的电压矢量控制集可以进一步减小电流跟踪误差和谐波。将所提方法与传统的MFPCC进行了对比,仿真和试验结果表明,相比传统方法,本文所提方法在不影响动态性能的前提下减小了电流谐波和稳态误差,具有更优异的稳态性能,为同步磁阻电机在实际应用中的高性能控制提供了新型解决方案,具有一定实用价值。

参考文献

MALEKIAN K, SHARIF M R, MILIMONFARED J. An optimal current vector control for synchronous reluctance motors incorporating field weakening[C]// 2008 10th IEEE International Workshop on Advanced Motion Control,Trento,Italy, 2008.

[本文引用: 1]

王洪武, 陈业明, 陈磊, .

同步磁阻电机矢量控制研究

[J]. 微特电机, 2015, 43(4):74-76.

[本文引用: 1]

WANG Hongwu, CHEN Yeming, CHEN Lei, et al.

Research on vector control of synchronous reluctance motor

[J]. Micro and Special Motors, 2015, 43(4):74-76.

[本文引用: 1]

张永昌, 夏波, 白宇宁, .

一种新型的交流电机离散电流调节器设计

[J]. 电气工程学报, 2017, 12(3):24-32.

[本文引用: 1]

ZHANG Yongchang, XIA Bo, BAI Yuning, et al.

A novel design method of AC motor current regulator in discrete-time domain

[J]. Journal of Electrical Engineering, 2017, 12(3):24-32.

[本文引用: 1]

周立求, 朱建华, 辜承林.

轴向叠片各向异性转子同步磁阻电机直接转矩控制的研究

[J]. 中国电机工程学报, 2006, 4(4):154-158.

[本文引用: 1]

ZHOU Liqiu, ZHU Jianhua, GU Chenglin.

Research on direct torque control of synchronous reluctance motor with axially layered anisotropic rotors

[J]. Proceedings of the CSEE, 2006, 4(4):154-158.

[本文引用: 1]

程启明, 程尹曼, 王映斐, .

交流电机控制策略的发展综述

[J]. 电力系统保护与控制, 2011, 39(9):145-154.

[本文引用: 1]

CHENG Qiming, CHENG Yinman, WANG Yingfei, et al.

Review of development of AC motor control strategy

[J]. Power System Protection and Control, 2011, 39(9):145-154.

[本文引用: 1]

VAZQUEZ S, RODRIGUEZ J, RIVERA M, et al.

Model predictive control for power converters and drives:Advances and trends

[J]. IEEE Trans. on Industrial Electronics, 2017, 64(2):935-947.

DOI:10.1109/TIE.2016.2625238      URL     [本文引用: 1]

ZHANG Yongchang, JIANG Hao, YANG Haitao.

Model predictive control of PMSM drives based on general discrete space vector modulation

[J]. IEEE Trans. on Energy Conversion, 2021, 36(2):1300-1307.

DOI:10.1109/TEC.60      URL     [本文引用: 1]

张永昌, 夏波, 杨海涛.

感应电机三矢量模型预测磁链控制

[J]. 电气工程学报, 2017, 12(3):1-9.

[本文引用: 1]

ZHANG Yongchang, XIA Bo, YANG Haitao.

A three-vectors-based model predictive flux control of induction motor drives

[J]. Journal of Electrical Engineering, 2017, 12(3):1-9.

[本文引用: 1]

ZHANG Yongchang, XIA Bo, YANG Haitao, et al.

Overview of model predictive control for induction motor drives

[J]. Chinese Journal of Electrical Engineering, 2016, 2(1):62-76.

[本文引用: 1]

Model predictive control (MPC) has attracted widespread attention in both academic and industry communities due to its merits of intuitive concept, quick dynamic response, multi-variable control, ability to handle various nonlinear constraints, and so on. It is considered a powerful alternative to field oriented control (FOC) and direct torque control (DTC) in high performance AC motor drives. Compared to FOC, MPC eliminates the use of internal current control loops and modulation block, hence featuring very quick dynamic response. Compared to DTC, MPC uses a cost function rather than a heuristic switching table to select the best voltage vector, producing better steady state performance. In spite of the merits above, MPC also presents some drawbacks such as high computational burden, nontrivial weighting factor tuning, high sampling frequency, variable switching frequency, model/parameter dependence and relatively high steady ripples in torque and stator flux. This paper presents the state of the art of MPC in high performance induction motor (IM) drives, and in particular the progress on solving the drawbacks of conventional MPC. Finally, one of the improved MPC is compared to FOC to validate its superiority. It is shown that the improved MPC has great potential in the future high performance AC motor drives.

ZHANG Yongchang, HUANG Lanlan, XU Donglin, et al.

Performance evaluation of two-vector-based model predictive current control of PMSM drives

[J]. Chinese Journal of Electrical Engineering, 2018, 4(2):65-81.

[本文引用: 1]

Conventional model predictive current control (MPCC) applies only one vector during one control period, which produces large torque and flux ripples and high current harmonics in permanent magnet synchronous motor (PMSM) drives. Recently MPCC with duty cycle control has been proposed to improve the steady state performance by applying one non-zero vector and one null vector during one control period. However, the prior method requires lots of calculations and predictions to find the optimal voltage vectors and calculate their respective duration. Different from prior enumeration-based MPCC, this paper proposes an efficient two-vector MPCC by applying two arbitrary voltage vectors during one control period. The reference voltage vector is firstly calculated based on the principle of deadbeat current control. Two optimal vectors and their duration are then obtained in a very efficient way, which does not require the calculation of current slopes in prior MPCC methods. The proposed method is compared to the state-of-the-art predictive control methods, including conventional MPCC, MPCC with duty cycle control, deadbeat control with space vector modulation (SVM) and modulated model predictive control (M2PC). Both simulation and experimental results prove that the proposed method achieves better steady state performance than conventional MPCC with or without duty cycle and the dynamic response is not degraded. Under the condition of insufficient dc bus voltage, the proposed method outperforms deadbeat control and M2PC by presenting even higher speed range and less torque ripples.

AROS N, MORA V, ALARCÓN C.

Model predictive control for synchronous reluctance motor drive

[C]// 2017 CHILEAN Conference on Electrical,Electronics Engineering,Information and Communication Technologies (CHILECON),Pucon,Chile, 2017.

[本文引用: 1]

XU Longya, XU Xingyi, LIPO T A, et al.

Vector control of a synchronous reluctance motor including saturation and iron loss

[J]. IEEE Transactions on Industry Applications, 1991, 27(5):977-985.

DOI:10.1109/28.90356      URL     [本文引用: 1]

LI Chengrui, WANG Gaolin, ZHANG Guoqiang, et al.

Review of parameter identification and sensorless control methods for synchronous reluctance machines

[J]. Chinese Journal of Electrical Engineering, 2020, 6(2):7-18.

DOI:10.23919/CJEE.7873788      URL     [本文引用: 1]

ODHANO S A, PESCETTO P, AWAN H A A, et al.

Parameter identification and self-commissioning in AC motor drives:A technology status review

[J]. IEEE Trans. on Power Electronics, 2019, 34(4):3603-3614.

DOI:10.1109/TPEL.2018.2856589      URL     [本文引用: 1]

ZHANG Xiaoguang, ZHAO Zhihao, CHENG Yu, et al.

Robust model predictive current control based on inductance and flux linkage extraction algorithm

[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12):14893-14902.

DOI:10.1109/TVT.25      URL     [本文引用: 1]

ERROUISSI R, AL-DURRA A, MUYEEN S M, et al.

Offset-free direct power control of DFIG under continuous-time model predictive control

[J]. IEEE Transactions on Power Electronics, 2017, 32(3):2265-2277.

DOI:10.1109/TPEL.2016.2557964      URL     [本文引用: 2]

HE Long, WANG Fengxiang, WANG Junxiao, et al.

Zynq implemented Luenberger disturbance observer based predictive control scheme for PMSM drives

[J]. IEEE Transactions on Power Electronics, 2020, 35(2):1770-1778.

DOI:10.1109/TPEL.63      URL     [本文引用: 2]

LIN F, CHEN S, HUANG M, et al.

Adaptive complementary sliding mode control for synchronous reluctance motor with direct-axis current control

[J]. IEEE Transactions on Industrial Electronics, 2022, 69(1):141-150.

DOI:10.1109/TIE.2021.3050373      URL     [本文引用: 1]

PETRIĆ I Z, GALASSINI A, WANG S, et al.

A robust current controller design method for highly nonlinear synchronous reluctance motors

[C]// The 10th International Conference on Power Electronics,Machines and Drives (PEMD 2020),2020.

[本文引用: 1]

LIN Chengkai, LIU Tianhua, YU Jente, et al.

Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique

[J]. IEEE Transactions on Industrial Electronics, 2014, 61(2):667-681.

DOI:10.1109/TIE.2013.2253065      URL     [本文引用: 2]

张虎, 张永昌, 刘家利, .

基于单次电流采样的永磁同步电机无模型预测电流控制

[J]. 电工技术学报, 2017, 32(2):180-187.

[本文引用: 1]

ZHANG Hu, ZHANG Yongchang, LIU Jiali, et al.

Model-free predictive current control for permanent magnet synchronous motor based on single current sampling

[J]. Transactions of China Electrotechnical Society, 2017, 32(2):180-187.

[本文引用: 1]

LIN Chengkai, YU Jente, LAI Yenshin, et al.

Improved model-free predictive current control for synchronous reluctance motor drives

[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6):3942-3953.

DOI:10.1109/TIE.41      URL     [本文引用: 2]

CARLET P G, TINAZZI F, BOLOGNANI S, et al.

An effective model-free predictive current control for synchronous reluctance motor drives

[J]. IEEE Transactions on Industry Applications, 2019, 55(4):3781-3790.

DOI:10.1109/TIA.28      URL     [本文引用: 1]

FLIESS M, JOIN C.

Model-free control and intelligent PID controllers:Towards a possible trivialization of nonlinear control

[J]. IFAC Proceedings Volumes, 2009, 42(10):1531-1550.

DOI:10.3182/20090706-3-FR-2004.00256      URL     [本文引用: 1]

JOIN C, CHAXEL F, FLIESS M.

“Intelligent” controllers on cheap and small programmable devices

[C]// 2013 Conference on Control and Fault-Tolerant Systems (SysTol),Nice,France, 2013.

[本文引用: 1]

FLIESS M, JOIN C.

Model-free control

[J]. INT Journal of Control, 2013, 86(12):2228-2252.

DOI:10.1080/00207179.2013.810345      URL     [本文引用: 1]

ZHANG Yongchang, JIN Jialin, HUANG Lanlan, et al.

Model-free predictive current control of PMSM drives based on ultra-local model

[C]// 2019 22nd International Conference on Electrical Machines and Systems (ICEMS),Harbin,China, 2019.

[本文引用: 1]

ZHANG Yongchang, JIN Jialin, HUANG Lanlan.

Model-free predictive current control of PMSM drives based on extended state observer using ultra-local model

[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2):993-1003.

DOI:10.1109/TIE.41      URL     [本文引用: 1]

赵凯辉, 戴旺坷, 周瑞睿, .

基于扩展滑模扰动观测器的永磁同步电机新型无模型滑模控制

[J]. 中国电机工程学报, 2022, 42(6):2375-2385.

[本文引用: 1]

ZHAO Kaihui, DAI Wangke, ZHOU Ruirui, et al.

New model-free sliding mode control of permanent magnet synchronous motor based on extended sliding mode disturbance observer

[J]. Proceedings of the CSEE, 2022, 42(6):2375-2385.

[本文引用: 1]

WANG Tianshi, ZHU Jianguo.

Finite-control-set model predictive direct torque control with extended set of voltage space vectors

[C]// 2017 20th International Conference on Electrical Machines and Systems (ICEMS),2017.

[本文引用: 1]

ZHANG Yongchang, WANG Xing, YANG Haitao, et al.

Robust predictive current control of induction motors based on linear extended state observer

[J]. Chinese Journal of Electrical Engineering, 2021, 7(1):94-105.

DOI:10.23919/CJEE.2021.000009      [本文引用: 1]

Model predictive current control can achieve fast dynamic response and satisfactory steady-state performance for induction motor (IM) drives. However, many motor parameters are required to implement the control algorithm. Consequently, if the motor parameters used in the controller are not accurate, the performance may deteriorate. In this paper, a new robust predictive current control is proposed to improve robustness against parameter mismatches. The proposed method employs an ultra-local model to replace the mathematical model of the IM. Additionally, to improve the control performance, a linear extended state observer is developed for disturbance estimation. Experimental tests confirm that satisfactory tracking performance can still be obtained although the motor parameters may not be accurately set in the controller.

/