基于注意力机制和多任务LSTM的锂电池容量预测方法*
|
鲁南, 欧阳权, 黄俍卉, 王志胜
|
Capacity Prediction of Lithium-ion Batteries Based on Multi-task LSTM with Attention Mechanism
|
LU Nan, OUYANG Quan, HUANG Lianghui, WANG Zhisheng
|
|
表3 多任务模式验证结果
|
|
|
预测间隔 | 模型 | B0005 | B0007 | B0018 | MAE | MSE | MAE | MSE | MAE | MSE | T+10 | MT-LSTM | 0.015 4 | 3.72×10-4 | 0.013 8 | 4.00×10-4 | 0.018 0 | 5.30×10-4 | LSTM-CNN-LSTM | 0.017 3 | 4.24×10-4 | 0.014 2 | 4.12×10-4 | 0.025 2 | 9.67×10-4 | Deep LSTM | 0.039 9 | 18.0×10-4 | 0.021 9 | 6.24×10-4 | 0.030 8 | 12.0×10-4 | T+15 | MT-LSTM | 0.020 7 | 6.32×10-4 | 0.019 7 | 6.35×10-4 | 0.019 6 | 6.08×10-4 | LSTM-CNN-LSTM | 0.020 1 | 6.46×10-4 | 0.019 1 | 4.79×10-4 | 0.023 9 | 9.39×10-4 | Deep LSTM | 0.056 2 | 34.3×10-4 | 0.022 3 | 7.12×10-4 | 0.047 3 | 31.6×10-4 |
|
|
|