电气工程学报, 2019, 14(2): 24-29 doi: 10.11985/2019.02.005

双有源桥DC-DC变换器最小回流功率控制策略

高帅, 张兴, 赵文广, 郭华越

合肥工业大学电气与自动化工程学院 合肥 230009

Minimum Reactive Power Control Strategy for Dual Active Bridge DC-DC Converter

GAO Shuai, ZHANG Xing, ZHAO Wenguang, GUO Huayue

School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009 China

收稿日期: 2019-05-6   网络出版日期: 2019-06-25

Received: 2019-05-6   Online: 2019-06-25

作者简介 About authors

高帅,男,1994年生,硕士研究生。主要从事应用于能量路由器中的双有源桥变换器的研究。E-mail: 1595449367@qq.com;

张兴,男,1963年生,教授,博士研究生导师。主要从事大型光伏并网发电、大功率风力发电用并网变流器等方面的研究。E-mail: honglf@ustc.edu.cn

摘要

针对回流功率造成的双有源桥DC-DC变换器运行效率低的问题,在双重双向内移相调制策略的基础上,提出了一种最小回流功率控制策略。该控制策略通过寻求最优的移相比组合,实现了全功率范围内最小回流功率控制。介绍了双重双向内移相的工作原理并建立其传输功率以及回流功率的数学模型,提出了最小回流功率控制策略,最后通过试验验证了控制策略的有效性。

关键词: 双有源桥DC-DC变换器 ; 双重双向内移相 ; 回流功率 ; 优化控制

Abstract

A minimum reactive power control strategy based on the dual-phase-shift control with bidirectional inner phase shifts(DPS-BIPS) modulation strategy is proposed to solve the low operating efficiency of the dual active bridge DC-DC converter caused by the reactive power. The control strategy achieves a minimum reactive power operation over the full power range by seeking an optimal combination of shifts. The working principle of DPS-BIPS is introduced,and its mathematical model of transmission power and reactive power is established. The minimum reactive power control strategy is proposed. Finally, the effectiveness of the optimization control algorithm is verified by experiment.

Keywords: Dual active bridge DC-DC converter ; DPS-BIPS ; reactive power ; optimization control

PDF (650KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

高帅, 张兴, 赵文广, 郭华越. 双有源桥DC-DC变换器最小回流功率控制策略. 电气工程学报[J], 2019, 14(2): 24-29 doi:10.11985/2019.02.005

GAO Shuai. Minimum Reactive Power Control Strategy for Dual Active Bridge DC-DC Converter. Journal of Electrical Engineering[J], 2019, 14(2): 24-29 doi:10.11985/2019.02.005

1 引言

双有源桥(Dual Active Bridge,DAB)DC-DC变换器由于其较高的功率密度、双向的能量传递以及易于实现软开关等特点,在分布式发电、电动汽车、智能电网中有着广泛的应用[1,2,3,4]。DAB变换器采用传统的单移相(Single-Phase-Shift,SPS)控制方式时,换流过程中存在一次侧H桥的交流输出电压和电感电流方向相反的阶段,此时移相电感中的能量流回输入电源侧,这部分功率称为回流功率。回流功率直接影响着变换器的传输效率,因此,如何实现最小回流功率运行受到研究人员越来越多的关注。

为克服SPS控制时因自由度少而无法实现回流功率优化的缺点,扩展移相[5,6](Extended-Phase-Shift,EPS)、双重移相[7](Dual-Phase-Shift,DPS),三重移相[8,9](Triple-Phase-Shift,TPS)等调制方法相继提出,并且针对不同的调制方法都有相应的最小回流功率的优化控制策略。但是,EPS调制时一、二次侧H桥电压转换状态不同,实现功率双向控制较为复杂[3];DPS调制在恒功率传输时,外移相比微小的变化会产生内移相比较大的变化,产生严重的浪涌电流,导致功率传输不稳定[10];TPS调制的自由度最多,控制系统设计复杂。文献[10]提出的双重双向内移相(Dual-Phase-Shift control with bidirectional inner phase shifts,DPS-BIPS)调制方法,抑制了DPS调制时在恒功率传输中产生的浪涌电流,使得功率传输更加稳定;相比EPS、TPS调制,功率双向控制系统设计简单,但如何实现DPS-BIPS调制时最小回流功率运行还有待研究。因此,现有方案虽然能实现最小回流功率控制,但增加了控制系统的复杂性,有些方案甚至造成功率传输的不稳定。

针对以上问题,本文在双重双向内移相调制的基础上,提出双有源桥变换器最小回流功率控制策略。首先介绍DPS-BIPS调制的工作原理并建立其传输功率与回流功率的数学模型,接着提出最小回流功率控制策略,最后通过试验验证了控制策略的有效性。

2 DPS-BIPS调制工作原理

图1为DAB变换器的等效电路拓扑,两侧的H桥通过中间的高频变压器连接,${{U}_{1}}$和${{U}_{2}}$分别为变换器两侧的直流电压,高频变压器的电压比为$n$,$L$为变压器折算到一次侧的漏感与外部串联电感之和,${{C}_{1}}$和${{C}_{2}}$为直流侧支撑电容。为了简化分析过程,本文假设功率从${{U}_{1}}$侧传输至${{U}_{2}}$侧,定义电压传输比$K={{U}_{1}}/n{{U}_{2}}$,规定$K\text{=}1$。

图1

图1   双有源桥DC-DC变换器拓扑


图2为DAB变换器在DPS-BIPS调制下的工作波形。Uh1U1侧H桥的输出电压,Uh2U2侧H桥输出经变压器折算到U1侧的电压,ULL的端电压,iL为电感电流,Ths为半个开关周期,内移相比D1U1U2侧H桥桥臂间的移相时间ΔT1相对于半个开关周期Ths的比值,D1T1/Ths,0≤D1≤1,外移相比D2U2侧超前桥臂相对于U1超前桥臂的移相时间ΔT2与半个开关周期Ths的比值,D2T2/ Ths,0≤D2≤1。相对于传统的DPS调制,DPS-BIPS调制一、二次侧H桥内移相的方向相反,本文仅研究0≤D1D2/2的运行情况。

图2

图2   DPS-BIPS调制下的工作原理波形


当变换器稳定后电感电流满足$iL(t)=-iL\left( t+T\text{hs} \right)$,据此可以求得半周期内各开关管动作时刻的电流为

$\left\{ \begin{align} & {{i}_{L}}({{t}_{0}})=\frac{{{U}_{1}}}{4Lf}({{D}_{1}}-1)+\frac{n{{U}_{2}}}{4Lf}({{D}_{1}}-2{{D}_{2}}+1) \\ & {{i}_{L}}({{t}_{1}})=\frac{{{U}_{1}}}{4Lf}({{D}_{1}}-1)+\frac{n{{U}_{2}}}{4Lf}(3{{D}_{1}}-2{{D}_{2}}+1) \\ & {{i}_{L}}({{t}_{2}})=\frac{{{U}_{1}}}{4Lf}(2{{D}_{2}}-3{{D}_{1}}-1)+\frac{n{{U}_{2}}}{4Lf}(1-{{D}_{1}}) \\ & {{i}_{L}}({{t}_{3}})=\frac{{{U}_{1}}}{4Lf}(2{{D}_{2}}-{{D}_{1}}-1)+\frac{n{{U}_{2}}}{4Lf}(1-{{D}_{1}}) \\ & {{i}_{L}}({{t}_{4}})=\frac{{{U}_{1}}}{4Lf}(1-{{D}_{1}})+\frac{n{{U}_{2}}}{4Lf}(2{{D}_{2}}-{{D}_{1}}-1) \\ \end{align} \right.$

根据平均功率计算公式$P=\frac{1}{T\text{hs}}\int_{o}^{T\text{hs}}{U\text{h1}i\text{L}\left( t \right)dt}$,可得传输功率并标幺化为

$p=\frac{P}{P\text{N}}=4{{D}_{2}}-4{{D}_{2}}^{2}-6{{D}_{1}}^{2}-4{{D}_{1}}\text{+}8{{D}_{1}}{{D}_{2}}$

式中,PN为SPS控制方式下的最大传输功率,其值为

$P\text{N}=\frac{nU1U2}{8fL}$

式中,$f$为开关频率。

当移相比满足0≤D1D2/2时,根据式(2),功率传输范围为[0,1]。

图2可以看出,前半个周期中,在t1~t1+t′阶段电感电流iL与一次侧H桥输出电压Uh1的相位相反,这时功率从电感侧流到输入电源中,将这部分功率定义为回流功率。可以看出,为了满足负载所需功率,需要传输更多的功率以补偿回流到电源侧的回流功率,从而会增加传输损耗,降低变换器效率。

令电感电流等于零,求得电流过零点的时刻为

${{i}_{L}}({{t}_{1}}+t')=0$

根据式(1)、(4),可得

$t'=\frac{K(1-{{D}_{1}})+(2{{D}_{2}}-3{{D}_{1}}-1)}{4f(K+1)}$

式中,K为电压传输比,K=U1/nU2

根据对回流功率的定义,在DPS-BIPS调制下,回流功率Pcir表达式为

${{P}_{\text{cir}}}=\frac{1}{T\text{hs}}\int_{{{t}_{1}}}^{{{t}_{1}}+t'}{U\text{h1 }\!\!|\!\!\text{ }iL\left( t \right)\text{ }\!\!|\!\!\text{ }dt}\text{ =}\frac{n{{U}_{1}}{{U}_{2}}{{\left[ K(1-{{D}_{1}})+(2{{D}_{2}}-3{{D}_{1}}-1) \right]}^{2}}}{16Lf(K+1)}$

根据式(3)与式(6),可得回流功率的标幺值为

${{M}_{\text{cir}}}\text{ =}\frac{{{\left[ K(1-{{D}_{1}})+(2{{D}_{2}}-3{{D}_{1}}-1) \right]}^{2}}}{2(K+1)}$

同理,可得SPS调制下,回流功率及其标幺值为

${{P}_{\text{cir-SPS}}}=\frac{n{{U}_{1}}{{U}_{2}}{{\left[ K-(1-2{{D}_{2}}) \right]}^{2}}}{16Lf(K+1)}$
${{M}_{\text{cir-SPS}}}\text{ =}\frac{{{\left[ K-(1-2{{D}_{2}}) \right]}^{2}}}{2(K+1)}$

3 最小回流功率控制策略

根据上述分析,回流功率与电压传输比K、内移相比D1、外移相比D2有关,考虑到DAB应用于能源路由器、直流配电网等场合时,连接的两端直流电压一般为固定值,因此本文仅考虑电压传输比 K=1的情况,分析推导出最小回流功率双重双向内移相控制方法。

K=1时,式(7)可以简化为

${{M}_{\text{cir}}}\text{ =}{{({{D}_{2}}-2{{D}_{1}})}^{2}}$

由式(10)可知,最小回流功率控制就是在满足功率传输的要求下,控制(D2-2D1)2最小。

由式(10)可知,移相比满足

${{D}_{2}}\text{=}2{{D}_{1}}$

此时,回流功率为

${{M}_{\text{cir}}}\text{ =}0$

将式(11)代入式(2),可得

$p=-6{{D}_{1}}^{2}\text{+}4{{D}_{1}}$
${{D}_{1}}\text{=}\frac{\text{2}-\sqrt{4-6p}}{\text{6}}$

根据式(13)、(14)可得功率最大值及相应移相比为

$\left\{ \begin{align} & {{p}_{\max }}=\frac{2}{3} \\ & {{D}_{1}}\text{=}\frac{1}{3} \\ & {{D}_{2}}\text{=}\frac{2}{3} \\ \end{align} \right.$

当传输功率ppmax时,为求取DPS-BIPS调制下的最小回流功率,构建拉格朗日函数为

$L({{D}_{\text{1}}},{{D}_{\text{2}}},\lambda )={{M}_{\text{cir}}}+\lambda(p-{{p}_{0}})$

式中,$L$为拉格朗日函数;$\lambda $为拉格朗日乘数;p0为所需传输的功率。

将式(2)、(7)代入式(16),得

$\left\{ \begin{matrix} {{D}_{1}}=\sqrt{\frac{1-p}{3}} \\ \,{{D}_{2}}=0.5+\frac{1}{2}{{D}_{1}} \\\end{matrix} \right.$

由式(17)代入式(10)可求得此时的回流功率为

${{M}_{\text{cir}}}\text{ =}\frac{9}{4}{{D}_{1}}^{2}-\frac{3}{2}{{D}_{1}}+\frac{1}{4}$

综上所述,为实现全功率范围内回流功率的优化,需要满足以下几点。

(1) 当0<p<2/3时

$\left\{ \begin{align} & {{D}_{1}}\text{=}\frac{\text{2}-\sqrt{4-6p}}{\text{6}} \\ & {{D}_{2}}\text{=}2{{D}_{1}} \\ \end{align} \right.$

此时,回流功率为零。

(2) 当2/3≤p≤1时

$\left\{ \begin{matrix} {{D}_{1}}=\sqrt{\frac{1-p}{3}} \\ \,{{D}_{2}}=0.5+\frac{1}{2}{{D}_{1}} \\ \end{matrix} \right.$

此时,回流功率为${{M}_{\text{cir}}}\text{ =}\frac{9}{4}{{D}_{1}}^{2}-\frac{3}{2}{{D}_{1}}+\frac{1}{4}$。

结合图形进一步分析优化控制策略,图3为优化算法实现回流功率最小控制时内外移相比的运行轨迹图。其中,虚线代表的曲线为等传输功率曲线;点画线代表的曲线为等回流功率曲线;实线代表的曲线为采用优化算法实现回流功率最小控制时内外移相比的运行轨迹。当传输功率小于2/3时,即图3B点,内外移相比按照OB段规律进行调节,理论情况下回流功率为零;当传输功率大于2/3时,内外移相比按照BD段规律进行调节,理论情况下回流功率达到最小。根据回流功率以及传输功率的特性可知,BD段就是等功率曲线与等回流功率曲线的切点所组成的线段。

图3

图3   移相比最优组合运行轨迹图


根据式(2)与式(10)绘制DPS-BIPS调制未优化的回流功率曲线;根据式(19)与式(20)绘制基于DPS-BIPS调制时优化控制下的回流功率曲线,如图4所示。

图4

图4   DPS-BIPS优化控制与未优化控制下的回流功率比较


图4可知,本文提出的最小回流功率控制策略,实现了全功率范围内的回流功率优化控制,相比未优化时的DPS-BIPS调制,回流功率更小。

本系统的控制框图如图5所示。采样输出电压与负载电流求得传输功率并进行标幺化,对功率进行判断从而得到优化控制的内移相比D1,参考电压U2ref与采样的输出电压U2作差后经PI调节器得到外移相比D2,移相实现闭环控制。

图5

图5   控制系统框图


4 试验验证

本文搭建了基于TMS320F28335、EtherCAT工业以太网通信的双有源桥DC-DC变换器的试验平台。其中嵌入式控制器CX2040为主站控制器,ET1100为从站控制器,一、二次侧H桥独立设计,通过磁性元件接口外接磁性元件,具体如图6所示,电路参数见下表。

   主要电路参数

参数数值参数数值
直流电压U1/V50 变压器电压比n 1
直流电压U2/V50 等效电感L/μH 150
开关频率f/kHz 20 支撑电容C/μF 110
IPM模块PM75B4L1C060--

新窗口打开| 下载CSV


图6

图6   试验硬件图


图7为输入电压50 V、输出电压50 V、负载为45 $\Omega $条件下两种控制方法一、二次侧H桥输出电压Uh1Uh2,电感电流iL以及瞬时传输功率Pins的实验波形,此时标幺化传输功率为0.53,变换器处于0<p<2/3工况下(对应图3A点)。其中,图7a为未优化时的DPS-BIPS调制波形,可以看出回流功率Pcir较大,传输效率为88.9%;图7b为采用DPS- BIPS调制优化算法后的实验波形,可以看出回流功率为零,传输效率为90.1%,试验结果与理论分析一致,优化算法既减小了回流功率,又提高了效率。

图7

图7   p=0.53时的试验波形


图8为输入电压50 V、输出电压50 V、负载为27 $\Omega $条件下两种控制方法一、二次侧H桥输出电压Uh1Uh2,电感电流iL以及瞬时传输功率Pins的试验波形,此时标幺化传输功率为0.87,变换器处于2/3≤p≤1工况下(对应图3C点)。由图8可以看出前者较后者有较大的回流功率,未优化时的DPS-BIPS调制传输效率为85.9 %,采用优化算法时的传输效率为87.9%,试验与理论分析相符。

图8

图8   p=0.87时的试验波形


根据效率方程η=Po/Pi,在输出相同功率的情况下,分别测量DPS-BIPS调制下优化前后的效率,绘制不同传输功率与效率的曲线,如图9所示。其中,Po为输出功率,通过测量输出电压与输出电流的乘积获得,Pi为输入功率,通过测量输入电压与输入电流的乘积获得。由图9可以看出,与传统DPS-BIPS控制方式相比,采用优化控制策略可以提高变换器系统的整体效率。

图9

图9   效率曲线


5 结论

本文提出了一种0≤D1D2/2条件下的双重双向内移相控制方法来优化DAB变换器的回流功率,采用构建拉格朗日函数的方法求取回流功率最小值对应的移相比组合,对传输功率的判断分两段加以控制。试验结果表明,采用DPS-BIPS的优化控制算法较传统的DPS-BIPS控制,降低了变换器的回流功率,提高了运行效率,具有一定的工程应用价值。

参考文献

宋强, 赵彪, 刘文华 , .

智能直流配电网研究综述

[J]. 中国电机工程学报, 2013,33(25):9-19.

[本文引用: 1]

Song Qiang, Zhao Biao, Liu Wenhua , et al.

An overview of research on smart DC distribution power network

[J]. Proceedings of the CSEE, 2013,33(25):9-19.

[本文引用: 1]

Xue Lingxiao, Shen Zhiyu, Dushan Boroyevich , et al.

Dual active bridge based battery charger for plug-in hybrid electric vehicle with charging current containing low frequency ripple

[J]. IEEE Transactions on Power Electronics, 2015,30(12):7299-7307.

[本文引用: 1]

Zhao Biao, Song Qiang, Liu Wenhua , et al.

Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system

[J]. IEEE Transactions on Power Electronics, 2014,29(8):4091-4106.

DOI:10.1109/TPEL.2013.2289913      URL     Magsci     [本文引用: 2]

High-frequency-link (HFL) power conversion systems (PCSs) are attracting more and more attentions in academia and industry for high power density, reduced weight, and low noise without compromising efficiency, cost, and reliability. In HFL PCSs, dual-active-bridge (DAB) isolated bidirectional dc-dc converter (IBDC) serves as the core circuit. This paper gives an overview of DAB-IBDC for HFL PCSs. First, the research necessity and development history are introduced. Second, the research subjects about basic characterization, control strategy, soft-switching solution and variant, as well as hardware design and optimization are reviewed and analyzed. On this basis, several typical application schemes of DAB-IBDC for HPL PCSs are presented in a worldwide scope. Finally, design recommendations and future trends are presented. As the core circuit of HFL PCSs, DAB-IBDC has wide prospects. The large-scale practical application of DAB-IBDC for HFL PCSs is expected with the recent advances in solid-state semiconductors, magnetic and capacitive materials, and microelectronic technologies.

Pan X, Akshay K R .

Novel bidirectional snubberless naturally commutated soft-switching current-fed full- bridge isolated DC/DC converter for fuel cell vehicles

[J]. IEEE Transactions on Industrial Electronics, 2014,61(5):2307-2315.

DOI:10.1109/TIE.2013.2271599      URL     Magsci     [本文引用: 1]

A novel naturally clamped zero-current commutated soft-switching bidirectional current-fed full-bridge isolated dc/dc converter is proposed. This proposed secondary-modulation technique naturally clamps the voltage across the primary-side devices with zero-current commutation, eliminating the necessity for active-clamp circuit or passive snubbers. Switching losses are reduced significantly owing to zero-current switching of primary-side devices and zero-voltage switching of secondary-side devices. Soft switching and voltage clamping are inherent and load independent. The voltage across primary-side devices is independent of duty cycle with varying input voltage and output power and clamped at rather low reflected output voltage, enabling the use of semiconductor devices of low voltage rating. These merits make the converter promising for fuel cell vehicles application, front-end dc/dc power conversion for fuel cell inverters, and energy storage. Steady-state operation, analysis, design, simulation results using PSIM 9.0.4, and experimental results are presented.

赵彪, 于庆广, 孙伟欣 .

双重移相控制的双向全桥DC-DC 变换器及其功率回流特性分析

[J]. 中国电机工程学报, 2012,32(12):43-50.

[本文引用: 1]

Zhao Biao, Yu Qingguang, Sun Weixin .

Bidirectional full-bridge DC-DC converters with dualphase-shifting control and its backflow power characteristic analysis

[J]. Proceedings of the CSEE, 2012,32(12):43-50.

[本文引用: 1]

程红, 高巧梅, 朱锦标 , .

基于双重移相控制的双向全桥DC-DC变换器动态建模与最小回流功率控制

[J]. 电工技术学报, 2014,29(3):245-253.

[本文引用: 1]

Cheng Hong, Gao Qiaomei, Zhu Jinbiao , et al.

Dynamic modeling and minimum backflow power controlling of the bi-directional full-bridge DC-DC converters based on dual-phase-shifting control

[J]. Transactions of China Electrotechnical Society, 2014,29(3):245-253.

[本文引用: 1]

于德, 付超, 王毅 , .

隔离型双向直流变换器的最小回流功率移相控制方法

[J]. 电工技术学报, 2017,32(24):126-137.

[本文引用: 1]

Yu De, Fu Chao, Wang Yi , et al.

The Phase-Shifted control method of isolated bidirectional DC-DC converter with minimum backflow power

[J]. Transactions of China Electrotechnical Society, 2017,32(24):126-137.

[本文引用: 1]

Krismer F, Kolar J W .

Accurate small-signal model for the digital control of an automotive bidirectional dual active bridge

[J]. IEEE Transactions on Power Systems, 2009,24(12):2756-2768.

URL     [本文引用: 1]

Krismer F, Kolar J W .

Efficiency-optimized high current dual active bridge converter for automotive applications

[J]. IEEE Transactions on Industrial Electronics, 2012,59(7):2745-2760.

DOI:10.1109/TIE.2011.2112312      URL     Magsci     [本文引用: 1]

An efficiency-optimized modulation scheme and design method are developed for an existing hardware prototype of a bidirectional dual active bridge (DAB) dc/dc converter. The DAB being considered is used for an automotive application and is made up of a high-voltage port with port voltage V-1, 240 V <= V1 <= 450 V, and a low-voltage port with port voltage V-2, 11 V <= V-2 <= 16 V; the rated output power is 2 kW. A much increased converter efficiency is achieved with the methods detailed in this paper: The average efficiency, calculated for different voltages V-1 and V-2, different power levels, and both directions of power transfer, rises from 89.6% (conventional phase shift modulation) to 93.5% (proposed modulation scheme). Measured efficiency values, obtained from the DAB hardware prototype, are used to verify the theoretical results.

Liu X, Zhu Z Q, Stone D A , et al.

Novel dual-phase-shift control with bidirectional inner phase shifts for a dual- active-bridge converter having low surge current and stable power control

[J]. IEEE Transactions on Power Electronics, 2017,32(5):4095-4106.

[本文引用: 2]

/