双有源桥DC-DC变换器最小回流功率控制策略
合肥工业大学电气与自动化工程学院 合肥 230009
Minimum Reactive Power Control Strategy for Dual Active Bridge DC-DC Converter
School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009 China
收稿日期: 2019-05-6 网络出版日期: 2019-06-25
Received: 2019-05-6 Online: 2019-06-25
作者简介 About authors
高帅,男,1994年生,硕士研究生。主要从事应用于能量路由器中的双有源桥变换器的研究。E-mail: 1595449367@qq.com;
张兴,男,1963年生,教授,博士研究生导师。主要从事大型光伏并网发电、大功率风力发电用并网变流器等方面的研究。E-mail: honglf@ustc.edu.cn
针对回流功率造成的双有源桥DC-DC变换器运行效率低的问题,在双重双向内移相调制策略的基础上,提出了一种最小回流功率控制策略。该控制策略通过寻求最优的移相比组合,实现了全功率范围内最小回流功率控制。介绍了双重双向内移相的工作原理并建立其传输功率以及回流功率的数学模型,提出了最小回流功率控制策略,最后通过试验验证了控制策略的有效性。
关键词:
A minimum reactive power control strategy based on the dual-phase-shift control with bidirectional inner phase shifts(DPS-BIPS) modulation strategy is proposed to solve the low operating efficiency of the dual active bridge DC-DC converter caused by the reactive power. The control strategy achieves a minimum reactive power operation over the full power range by seeking an optimal combination of shifts. The working principle of DPS-BIPS is introduced,and its mathematical model of transmission power and reactive power is established. The minimum reactive power control strategy is proposed. Finally, the effectiveness of the optimization control algorithm is verified by experiment.
Keywords:
本文引用格式
高帅, 张兴, 赵文广, 郭华越.
GAO Shuai.
1 引言
为克服SPS控制时因自由度少而无法实现回流功率优化的缺点,扩展移相[5,6](Extended-Phase-Shift,EPS)、双重移相[7](Dual-Phase-Shift,DPS),三重移相[8,9](Triple-Phase-Shift,TPS)等调制方法相继提出,并且针对不同的调制方法都有相应的最小回流功率的优化控制策略。但是,EPS调制时一、二次侧H桥电压转换状态不同,实现功率双向控制较为复杂[3];DPS调制在恒功率传输时,外移相比微小的变化会产生内移相比较大的变化,产生严重的浪涌电流,导致功率传输不稳定[10];TPS调制的自由度最多,控制系统设计复杂。文献[10]提出的双重双向内移相(Dual-Phase-Shift control with bidirectional inner phase shifts,DPS-BIPS)调制方法,抑制了DPS调制时在恒功率传输中产生的浪涌电流,使得功率传输更加稳定;相比EPS、TPS调制,功率双向控制系统设计简单,但如何实现DPS-BIPS调制时最小回流功率运行还有待研究。因此,现有方案虽然能实现最小回流功率控制,但增加了控制系统的复杂性,有些方案甚至造成功率传输的不稳定。
针对以上问题,本文在双重双向内移相调制的基础上,提出双有源桥变换器最小回流功率控制策略。首先介绍DPS-BIPS调制的工作原理并建立其传输功率与回流功率的数学模型,接着提出最小回流功率控制策略,最后通过试验验证了控制策略的有效性。
2 DPS-BIPS调制工作原理
图1为DAB变换器的等效电路拓扑,两侧的H桥通过中间的高频变压器连接,${{U}_{1}}$和${{U}_{2}}$分别为变换器两侧的直流电压,高频变压器的电压比为$n$,$L$为变压器折算到一次侧的漏感与外部串联电感之和,${{C}_{1}}$和${{C}_{2}}$为直流侧支撑电容。为了简化分析过程,本文假设功率从${{U}_{1}}$侧传输至${{U}_{2}}$侧,定义电压传输比$K={{U}_{1}}/n{{U}_{2}}$,规定$K\text{=}1$。
图1
图2为DAB变换器在DPS-BIPS调制下的工作波形。Uh1为U1侧H桥的输出电压,Uh2为U2侧H桥输出经变压器折算到U1侧的电压,UL为L的端电压,iL为电感电流,Ths为半个开关周期,内移相比D1为U1、U2侧H桥桥臂间的移相时间ΔT1相对于半个开关周期Ths的比值,D1=ΔT1/Ths,0≤D1≤1,外移相比D2为U2侧超前桥臂相对于U1超前桥臂的移相时间ΔT2与半个开关周期Ths的比值,D2=ΔT2/ Ths,0≤D2≤1。相对于传统的DPS调制,DPS-BIPS调制一、二次侧H桥内移相的方向相反,本文仅研究0≤D1≤D2/2的运行情况。
图2
当变换器稳定后电感电流满足$iL(t)=-iL\left( t+T\text{hs} \right)$,据此可以求得半周期内各开关管动作时刻的电流为
根据平均功率计算公式$P=\frac{1}{T\text{hs}}\int_{o}^{T\text{hs}}{U\text{h1}i\text{L}\left( t \right)dt}$,可得传输功率并标幺化为
式中,PN为SPS控制方式下的最大传输功率,其值为
式中,$f$为开关频率。
当移相比满足0≤D1≤D2/2时,根据式(2),功率传输范围为[0,1]。
从图2可以看出,前半个周期中,在t1~t1+t′阶段电感电流iL与一次侧H桥输出电压Uh1的相位相反,这时功率从电感侧流到输入电源中,将这部分功率定义为回流功率。可以看出,为了满足负载所需功率,需要传输更多的功率以补偿回流到电源侧的回流功率,从而会增加传输损耗,降低变换器效率。
令电感电流等于零,求得电流过零点的时刻为
根据式(1)、(4),可得
式中,K为电压传输比,K=U1/nU2。
根据对回流功率的定义,在DPS-BIPS调制下,回流功率Pcir表达式为
根据式(3)与式(6),可得回流功率的标幺值为
同理,可得SPS调制下,回流功率及其标幺值为
3 最小回流功率控制策略
根据上述分析,回流功率与电压传输比K、内移相比D1、外移相比D2有关,考虑到DAB应用于能源路由器、直流配电网等场合时,连接的两端直流电压一般为固定值,因此本文仅考虑电压传输比 K=1的情况,分析推导出最小回流功率双重双向内移相控制方法。
当K=1时,式(7)可以简化为
由式(10)可知,最小回流功率控制就是在满足功率传输的要求下,控制(D2-2D1)2最小。
由式(10)可知,移相比满足
此时,回流功率为
将式(11)代入式(2),可得
根据式(13)、(14)可得功率最大值及相应移相比为
当传输功率p≥pmax时,为求取DPS-BIPS调制下的最小回流功率,构建拉格朗日函数为
式中,$L$为拉格朗日函数;$\lambda $为拉格朗日乘数;p0为所需传输的功率。
将式(2)、(7)代入式(16),得
由式(17)代入式(10)可求得此时的回流功率为
综上所述,为实现全功率范围内回流功率的优化,需要满足以下几点。
(1) 当0<p<2/3时
此时,回流功率为零。
(2) 当2/3≤p≤1时
此时,回流功率为${{M}_{\text{cir}}}\text{ =}\frac{9}{4}{{D}_{1}}^{2}-\frac{3}{2}{{D}_{1}}+\frac{1}{4}$。
图3
根据式(2)与式(10)绘制DPS-BIPS调制未优化的回流功率曲线;根据式(19)与式(20)绘制基于DPS-BIPS调制时优化控制下的回流功率曲线,如图4所示。
图4
由图4可知,本文提出的最小回流功率控制策略,实现了全功率范围内的回流功率优化控制,相比未优化时的DPS-BIPS调制,回流功率更小。
本系统的控制框图如图5所示。采样输出电压与负载电流求得传输功率并进行标幺化,对功率进行判断从而得到优化控制的内移相比D1,参考电压U2ref与采样的输出电压U2作差后经PI调节器得到外移相比D2,移相实现闭环控制。
图5
4 试验验证
本文搭建了基于TMS320F28335、EtherCAT工业以太网通信的双有源桥DC-DC变换器的试验平台。其中嵌入式控制器CX2040为主站控制器,ET1100为从站控制器,一、二次侧H桥独立设计,通过磁性元件接口外接磁性元件,具体如图6所示,电路参数见下表。
表 主要电路参数
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
直流电压U1/V | 50 | 变压器电压比n | 1 |
直流电压U2/V | 50 | 等效电感L/μH | 150 |
开关频率f/kHz | 20 | 支撑电容C/μF | 110 |
IPM模块 | PM75B4L1C060 | - | - |
图6
图7
图8
图9
5 结论
本文提出了一种0≤D1≤D2/2条件下的双重双向内移相控制方法来优化DAB变换器的回流功率,采用构建拉格朗日函数的方法求取回流功率最小值对应的移相比组合,对传输功率的判断分两段加以控制。试验结果表明,采用DPS-BIPS的优化控制算法较传统的DPS-BIPS控制,降低了变换器的回流功率,提高了运行效率,具有一定的工程应用价值。
参考文献
智能直流配电网研究综述
[J].
An overview of research on smart DC distribution power network
[J].
Dual active bridge based battery charger for plug-in hybrid electric vehicle with charging current containing low frequency ripple
[J].
Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system
[J].
DOI:10.1109/TPEL.2013.2289913
URL
Magsci
[本文引用: 2]
High-frequency-link (HFL) power conversion systems (PCSs) are attracting more and more attentions in academia and industry for high power density, reduced weight, and low noise without compromising efficiency, cost, and reliability. In HFL PCSs, dual-active-bridge (DAB) isolated bidirectional dc-dc converter (IBDC) serves as the core circuit. This paper gives an overview of DAB-IBDC for HFL PCSs. First, the research necessity and development history are introduced. Second, the research subjects about basic characterization, control strategy, soft-switching solution and variant, as well as hardware design and optimization are reviewed and analyzed. On this basis, several typical application schemes of DAB-IBDC for HPL PCSs are presented in a worldwide scope. Finally, design recommendations and future trends are presented. As the core circuit of HFL PCSs, DAB-IBDC has wide prospects. The large-scale practical application of DAB-IBDC for HFL PCSs is expected with the recent advances in solid-state semiconductors, magnetic and capacitive materials, and microelectronic technologies.
Novel bidirectional snubberless naturally commutated soft-switching current-fed full- bridge isolated DC/DC converter for fuel cell vehicles
[J].
DOI:10.1109/TIE.2013.2271599
URL
Magsci
[本文引用: 1]
A novel naturally clamped zero-current commutated soft-switching bidirectional current-fed full-bridge isolated dc/dc converter is proposed. This proposed secondary-modulation technique naturally clamps the voltage across the primary-side devices with zero-current commutation, eliminating the necessity for active-clamp circuit or passive snubbers. Switching losses are reduced significantly owing to zero-current switching of primary-side devices and zero-voltage switching of secondary-side devices. Soft switching and voltage clamping are inherent and load independent. The voltage across primary-side devices is independent of duty cycle with varying input voltage and output power and clamped at rather low reflected output voltage, enabling the use of semiconductor devices of low voltage rating. These merits make the converter promising for fuel cell vehicles application, front-end dc/dc power conversion for fuel cell inverters, and energy storage. Steady-state operation, analysis, design, simulation results using PSIM 9.0.4, and experimental results are presented.
双重移相控制的双向全桥DC-DC 变换器及其功率回流特性分析
[J].
Bidirectional full-bridge DC-DC converters with dualphase-shifting control and its backflow power characteristic analysis
[J].
基于双重移相控制的双向全桥DC-DC变换器动态建模与最小回流功率控制
[J].
Dynamic modeling and minimum backflow power controlling of the bi-directional full-bridge DC-DC converters based on dual-phase-shifting control
[J].
隔离型双向直流变换器的最小回流功率移相控制方法
[J].
The Phase-Shifted control method of isolated bidirectional DC-DC converter with minimum backflow power
[J].
Accurate small-signal model for the digital control of an automotive bidirectional dual active bridge
[J].
Efficiency-optimized high current dual active bridge converter for automotive applications
[J].
DOI:10.1109/TIE.2011.2112312
URL
Magsci
[本文引用: 1]
An efficiency-optimized modulation scheme and design method are developed for an existing hardware prototype of a bidirectional dual active bridge (DAB) dc/dc converter. The DAB being considered is used for an automotive application and is made up of a high-voltage port with port voltage V-1, 240 V <= V1 <= 450 V, and a low-voltage port with port voltage V-2, 11 V <= V-2 <= 16 V; the rated output power is 2 kW. A much increased converter efficiency is achieved with the methods detailed in this paper: The average efficiency, calculated for different voltages V-1 and V-2, different power levels, and both directions of power transfer, rises from 89.6% (conventional phase shift modulation) to 93.5% (proposed modulation scheme). Measured efficiency values, obtained from the DAB hardware prototype, are used to verify the theoretical results.
Novel dual-phase-shift control with bidirectional inner phase shifts for a dual- active-bridge converter having low surge current and stable power control
[J].
/
〈 |
|
〉 |
