电气工程学报, 2018, 13(10): 29-34 doi: 10.11985/2018.10.006

电压型PWM整流器控制现状及发展趋势分析

张军

国网陕西省电力公司黄陵县供电分公司 延安 727300

Analysis of Control Status and Development Trend of Voltage Source PWM Rectifier

Zhang Jun

Huangling Power Branch of State Grid Shanxi Electric Power Company Yanan 727300 China

收稿日期: 2018-05-9   网络出版日期: 2018-10-31

Received: 2018-05-9   Online: 2018-10-31

作者简介 About authors

张 军 男 1973年生,助力工程师,长期从事电力系统基层生产运行工作。

摘要

针对微电网及工业领域中目前广泛应用的电压型PWM整流器,首先对其主要原理、双闭环控制结构进行了简要分析,按被控量类型将控制系统分为电流和功率两大类,在此基础上全面阐述了传统、现代及智能控制等方法,最后展望了电压型PWM整流器控制的发展趋势。

关键词: 电压型PWM整流器 ; 双闭环控制 ; 控制方法

Abstract

For the voltage source PWM rectifiers which are increasingly widely used in micro-grids and many industrial fields, the main principles and double closed-loop control structure of the voltage source PWM rectifiers are briefly analyzed. According to the type of controlled quantity, the control system is divided into two categories including current and power, then the traditional, modern and intelligent control methods are comprehensively expounded based on the strategy. Finally the development trend of voltage source PWM rectifier control is expected in the paper.

Keywords: PWM rectifier ; double closed-loop control ; control method

PDF (1555KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张军. 电压型PWM整流器控制现状及发展趋势分析. 电气工程学报[J], 2018, 13(10): 29-34 doi:10.11985/2018.10.006

Zhang Jun. Analysis of Control Status and Development Trend of Voltage Source PWM Rectifier. Journal of Electrical Engineering[J], 2018, 13(10): 29-34 doi:10.11985/2018.10.006

1 引言

传统的整流电路主要由二极管(不控)、晶闸管(相控)等器件构成,普遍存在谐波畸变大、功率因数低及能量损耗大[1]等问题。随着全控型器件IGBT的迅速发展,PWM整流器应运而生,其功率因数校正和谐波抑制效果显著,目前己被广泛用于微电网系统[2]、有源滤波器[3]、无功补偿器[4]、超导储能[5]、交流传动[6]、直流输电[7]及统一潮流控制[8]等方面。按直流侧电源储能方式,PWM整流器可分为电压型整流器(Voltage Source Rectifier,VSR)和电流型整流器(Current Source Rectifier,CSR)等。因VSR结构简单、电能损耗小、动态响应快,目前在PWM整流器研究领域处于主导地位,其控制技术更是研究重点。

VSR的控制一般采用直流电压外环、交流电流内环的双级环路结构,外环的输出作为内环的指令来进行直流电压与交流电流的相互控制[9]。本文按被控量类型对其进行分类,从传统、现代及智能控制三个层面综述VSR的各种控制技术,并对其发展前景进行展望。

2 VSR双闭环控制策略

控制策略一直是诸多VSR研究的重点和热点,主要包括两个控制目标,一是使VSR直流侧输出电压稳定;二是让网侧电流正弦化,且与电压相位同步,达到单位功率因数运行。

(1)电流控制策略。电流控制策略可分为间接与直接两种。间接电流控制策略的主要代表为幅相控制[10],它通过对网侧电压基波幅值及相位的控制来间接控制电流。原理简单,无需电流传感器,成本较低且静态特性好,但鲁棒性较差,受到扰动时易产生振荡,超调量大;另一种直接电流控制则是根据VSR的数学模型,在三相静止坐标系或两相同步旋转坐标系中直接控制电流分量,容易实现且物理意义清晰,已成为目前应用最广泛的方法[11]。该控制策略电流响应快,抗干扰能力强,稳态精度较高。但若要实现高品质的无静差控制,还需锁相及检测环节来保证准确度。

(2)功率控制策略。功率控制是通过对瞬时有功和无功功率的控制来间接实现对VSR网侧瞬时有功和无功电流的控制[12]。它通过对电网电压的采样和瞬时功率的估算,去选择预存在开关表中的状态量来指导VSR桥臂通断,从而达到整流的目的。无需坐标变换、PWM发波及电流调节等繁琐环节,算法简单且动态性能良好,但基于电压定向的功率控制相位角检测易受到电网电压谐波的干扰。在此基础上,文献[13]提出了基于虚拟磁链的策略,将整流器交流侧等效成一个虚拟的电动机,有效地克服了电网电压谐波对磁链的影响,从而保证了控制系统的准确度。通过虚拟磁链估算无功与有功功率还可省略电压传感器,降低成本。

3 VSR主要控制方法

3.1 传统控制方法

在设计控制系统时,VSR常被视为线性系统,但其本质属于动态系统,采用非线性控制技术可提高鲁棒性与适应性,故常将成熟的线性控制与非线性理论结合。

滞环电流控制因其原理简单、设计方便等优势被广泛应用于整流器控制中[14],但其没有固定的开关频率,滤波环节的设计相对困难;其后,三角载波比较法[15]的出现固定了开关频率,克服了滞环电流控制的不足,但却存在电流偏差;随后出现了PID控制,大大提高了控制系统的性能[16],目前在控制领域被广泛应用,但参数的整定始终需要反复凑试来确定;比例谐振控制[17]的出现省去了坐标变换环节,直接对交流量进行控制,但控制器的设计依然没有避免繁琐的凑试环节。上述控制方法目前都需要通过计算机数字化方法实现,采样及计算等必然存在延迟,虽然其后预测电流、无差拍、单周、重复、模型预测[18,19,20,21,22]等几种补偿延迟的预测控制技术也相继被提出,但普遍对参数变化敏感,数学精度要求较高。

3.2 现代非线性控制方法

上述基于理想模型的线性控制方法经过了过多的简化处理,控制效果始终有限,故现代非线性控制理论也被应用于PWM整流器控制中。

为了提高整流器的抗干扰能力,自适应控制被引入控制系统中[23],该方法可在线修正自身参数以适应对象变化,提高了鲁棒性,但模型的建立及运算相当复杂,辨识和校正需消耗一定时间,难以应用于实时性高、结构变化的系统;鲁棒控制[24]是一种处理不确定性系统的有效方法,它将扰动与系统本身的约束条件结合,形成一种优化的问题来求解,从而提高了系统的稳定性与可控性,但过于依赖设计者的经验,特别在高阶系统中,计算过大且控制效果有限;随后,为了解决时变参数的问题,变结构控制被引入整流器控制中[25],它可有效降低系统阶数,但需要较高的采样频率,给滤波器的设计带来困难,且对各控制器的参数精度要求较高。

基于微分几何的反馈线性化解耦控制[26]是用数学工具将复杂的非线性系统转化为线性系统的控制方法,电流内环可通过解耦矩阵来实现反馈线性化,达到有功与无功的完全解耦,但该方法不能直接限制有功电流,且数学工具的引入无疑加大了设计难度;基于此,无需微分几何理论束缚的逆系统控制[27]被提出,它利用给定的系统生成一个辅助模型,与被控对象串联组成一个伪线性的规范化系统,进一步扩大了应用范围,但此方法要求给定的系统模型精确已知,依赖中间辅助模型的精度。

随着现代控制理论的进一步发展,基于Lyapunov能量函数稳定性理论的控制方法也出现在整流器系统中。起初,文献[28]利用电感、电容储能的定量关系,以及数学模型、空间矢量的约束条件等推导出新算法,解决了大范围稳定问题,但Lyapunov能量函数的建立不唯一,最佳函数难以获取;随后,将控制理论从信号处理转化到能量处理角度的无源控制(Passivity-Based Control,PBC)[29]被提出,它基于欧拉–拉格朗日(Euler-Lagrange,EL)数学模型,通过能量整形和阻尼注入,迫使系统总能量去跟踪预期的能量函数,从而达到闭环控制系统无源的目的,整个设计过程省去了寻找Lyapunov函数的步骤,但在构造存储函数时会对Lagrange的结构造成破坏,影响其稳定性;基于哈密顿系统的PBC控制[30]采用端口受控哈密顿函数模型(Port-Controlled Hamiltonian,PCH)表示系统,利用能量耗散的概念将引入系统变为端口受控的耗散哈密顿系统(Port-Controlled Dissipative Hamiltonian,PCHD),再结合反馈镇定原理来寻找反馈控制,解决了Lagrange结构被破坏的问题,但期望哈密顿函数、互联和阻尼矩阵等变量都缺乏必要的物理意义,计算较复杂,难以实际应用;最终出现的反步控制法[31]以Lyapunov能量函数收敛为目标,将复杂的非线性系统分解成若干个子系统,采用虚拟控制量进行静态补偿,各个子系统间从前往后递推设计,后面的子系统保证前面的子系统达到正定,整个设计保证了系统全局一致的渐近稳定,解决了Lyapunov能量函数的构造性问题,不要求非线性系统满足匹配条件,增大了应用范围,但要求对象数学模型精度高,参数变化也需满足线性化条件,计算量大大增加,实现难度进一步加大。

3.3 智能控制方法

上述传统或现代的控制方法都是在PWM整流器的数学模型基础上,从不同角度综合考虑多种因素并对系统进行控制,控制策略因控制目标侧重点的不同而不同。而对于一些无严格数学描述、缺乏必要物理意义及无规律可循的系统模型,现有的控制方式通常无法直接使用,故新的智能控制方法应运而生。

目前应用最广泛的智能控制方法主要有两种:一种是模糊控制;另一种是神经网络控制。模糊控制模仿人的思维方式,将精确量模糊化,通过推理运算求得输出后,再利用去模糊化获得输出的确定值[32]。它无需依赖被控对象的数学模型,对系统参数的变化适应性强,鲁棒性高,但其设计精度与控制规则的优劣相互制约,具有很大的人为主观因素,难以实现最优控制;基于神经网络的控制是模仿大脑对信息的处理方式,将函数的映射关系分布在网络连接权与节点的函数中,将输入、输出数据设为学习样本,调节每层的连接权值,使输入与输出间的关系可任意逼近期望的非线性动态系统[33]。其自学习能力强、容错性高,但物理意义不够明确,尚无较科学的理论依据,且在控制过程中对数据信号的处理要求较高。

智能控制方法各有其优势及局限,可根据应用场合合理选取。目前,将各智能控制方法优势互补,集成融合为更高智能的方案已成为新趋势,如模糊神经控制[34]法,将模糊控制与神经网络控制结合,取长补短,相互组成更为智能的控制方案,此类控制思想将成为VSR智能控制的大势所趋。

4 VSR控制技术研究展望

随着PWM整流器的广泛应用,其控制技术的研究将不断发展,主要表现在以下几个方面:

(1)电网不平衡条件下的VSR控制技术研究[35,36,37]。当电网处于不平衡状态时,电压的负序分量使VSR网侧电流和直流侧电压含有低次谐波,电网平衡条件下的控制技术已不再适用,严重时影响正常运行,故需提出相应的新控制技术。目前此类研究的主要思想是额外引入相应的模块及算法去改善或抑制不平衡因素,使其达到等效平衡状态。

(2)CSR控制研究[38]。超导技术的迅速发展,解决了直流侧储能元件为电感的CSR效率问题,其控制电流更为直接,动态响应更为迅速,体积及成本也得到较大改善。因此,CSR 在中等及大功率场合具有更宽阔的应用前景,其控制技术研究也将成为一大热点。

(3)新控制方法研究。随着电力电子、微处理器、计算机等技术的突飞猛进,复杂、繁琐、计算量大的算法已可逐步实现,这给寻找新控制方法及改进传统控制提供了可能;很难仅用一种方案来解决实际应用中出现的众多问题,故将不同类型控制方法 “整合”成为综合控制策略也是一种新趋势,如电网侧利用神经网络控制离线训练一个控制器来代替滞环比较器,不仅保持了滞环控制器的鲁棒性及快速性,还可限制开关器件的通断频率[39]。总之,不同方法取长补短,博采众长,优势融合组成更有效的新控制方案是VSR控制技术的一个新方向。

5 结论

本文对电压型PWM整流器控制方法进行了详细阐述,并对其进行科学分类,全面地分析了各种方法的原理及优缺点。在此基础上,针对VSR控制中存在的一些尚未完全解决的问题及不足,对其发展方向作了分析。可预见的是,随着整流行业及数字化技术的不断发展,VSR的应用前景将更为广阔。

参考文献

张兴, 张崇巍 . PWM整流器及其控制[M]. 北京: 机械工业出版社, 2012.

[本文引用: 1]

黄勇, 郭珂, 冯玉 , .

微电网储能技术研究综述

[C]. 中国高校电力电子与电力传动学术年会, 2010.

[本文引用: 1]

钟山, 杨晟, 赵争鸣 .

有源电力滤波器技术与发展综述

[J].变频器世界, 2011(1):45-49.

[本文引用: 1]

Zhong Shan, Yang Sheng, Zhao Zhengming .

Overview of active power filter technology and development

[J].Frequency Converter World, 2011(1):45-49.

[本文引用: 1]

王兆安 . 谐波抑制和无功功率补偿[M]. 北京: 机械工业出版社, 2016.

[本文引用: 1]

张占奎, 王德意, 迟永宁 , .

超导储能装置提高风电场暂态稳定性的研究

[J]. 电力系统保护与控制, 2010,38(24):38-42.

DOI:10.7667/j.issn.1674-3415.2010.24.008      URL     [本文引用: 1]

Zhang Zhankui, Wang Deyi, Chi Yongning , et al.

Study on improving the transient stability of wind farms by superconducting energy storage devices

[J]. Power System Protection and Control, 2010,38(24):38-42.

DOI:10.7667/j.issn.1674-3415.2010.24.008      URL     [本文引用: 1]

吴斌, 卫三民, 苏位峰 , . 大功率变频器及交流传动[M]. 北京: 机械工业出版社, 2015.

[本文引用: 1]

韦延方, 卫志农, 孙国强 , .

适用于电压源换流器型高压直流输电的模块化多电平换流器最新研究进展

[J]. 高电压技术, 2012,38(5):1243-1252.

[本文引用: 1]

Wei Yanfang, Wei Zhinong, Sun Guoqiang , et al.

Recent advances in modular multilevel converters for voltage source converter HVDC transmission

[J]. High Voltage Engineering, 2012,38(5):1243-1252.

[本文引用: 1]

Verma K S, Singh S N, Gupta H O .

Location of unified power flow controller for congestion management

[J]. Electric Power Systems Research, 2011,58(2):89-96.

DOI:10.1016/S0378-7796(01)00123-7      URL     [本文引用: 1]

程启明, 程尹曼, 薛阳 , .

三相电压源型PWM整流器控制方法的发展综述

[J]. 电力系统保护与控制, 2012,40(3):145-155.

DOI:10.7667/j.issn.1674-3415.2012.03.028      URL     [本文引用: 1]

Cheng Qiming, Cheng Yinman, Xue Yang , et al.

Development of control methods for three-phase voltage source PWM rectifiers

[J]. Power System Protection and Control, 2012,40(3):145-155.

DOI:10.7667/j.issn.1674-3415.2012.03.028      URL     [本文引用: 1]

Wu Guoxiang, Chen G C, Li Jie , et al.

Phase and amplitude control strategy for three-phase PWM converters

[J]. Journal of Shanghai University, 2008,14(2).

[本文引用: 1]

Zhou S, Hu H, Wu H .

The direct current control strategies for single phase PWM rectifiers

[J]. World of Inverters, 2014.

[本文引用: 1]

Bouafia A, Gaubert J P, Krim F .

Predictive direct power control of three-phase pulsewidth modulation (PWM) rectifier using space-vector modulation (SVM)

[J]. IEEE Transactions on Power Electronics, 2010,25(1):228-236.

DOI:10.1109/TPEL.2009.2028731      URL     [本文引用: 1]

Cho Y, Lee K B .

Virtual-flux-based predictive direct power control of three-phase PWM rectifiers with fast dynamic response

[J]. IEEE Transactions on Power Electronics, 2016,31(4):3348-3359.

DOI:10.1109/TPEL.2015.2453129      URL     [本文引用: 1]

郑建勇, 王杰, 梅军 , .

基于电压空间矢量的滞环电流控制方法和APF的系统设计

[J]. 电力自动化设备, 2011,31(5):49-52.

[本文引用: 1]

Zheng Jianyong, Wang Jie, Mei Jun , et al.

Hysteresis current control method based on voltage space vector and system design of APF

[J]. Electric Power Automation Equipment, 2011,31(5):49-52.

[本文引用: 1]

Dwivedi A, Tiwari A N .

Analysis of three-phase PWM rectifiers using hysteresis current control techniques: a survey

[J]. International Journal of Power Electronics, 2017,8(4):349.

DOI:10.1504/IJPELEC.2017.085201      URL     [本文引用: 1]

Wang R, Zeng Y, Su X , et al.

Research on single phase PWM rectifier based on nonlinear PID control theory

[J]. Electrical Measurement & Instrumentation, 2017.

DOI:10.1088/1361-6579/ab668f      URL     PMID:31891938      [本文引用: 1]

Development of wearable medical technology for remote monitoring of patients suffering from chronic lung diseases may improve the care, therapy and outcome of these patients.

李立, 赵葵银, 徐昕远 , .

单相PWM整流器比例谐振控制与前馈补偿控制

[J]. 电力系统保护与控制, 2010,38(9):75-79.

DOI:10.7667/j.issn.1674-3415.2010.09.015      URL     [本文引用: 1]

Li Li, Zhao Kuiyin, Xu Xinyuan , et al.

Proportional resonance control and feedforward compensation control of single-phase PWM rectifier

[J]. Power System Protection and Control, 2010,38(9):75-79.

DOI:10.7667/j.issn.1674-3415.2010.09.015      URL     [本文引用: 1]

Song Z, Xia C, Liu T .

Predictive current control of three-phase grid-connected converters with constant switching frequency for wind energy systems

[J]. IEEE Transactions on Industrial Electronics, 2013,60(6):2451-2464.

DOI:10.1109/TIE.2012.2225394      URL     [本文引用: 1]

A predictive current controller with an extended-state observer (ESO) is proposed for grid integration of wind energy systems. In each sampling period, the proposed strategy calculates the converter switching time that minimizes a cost function defined as a sum of squared current errors, leading to constant switching frequency. To achieve excellent dynamic performance, the impact of sampling delay is analyzed, and detailed compensation methods are proposed. In addition, an ESO is constructed to suppress parameter variations and modeling errors, which affect the performance of the controller. The parameter tuning and the stability of the observer are analyzed. The proposed strategy not only presents rapid dynamic response due to the use of the predictive current controller but also possesses robust control performance as a result of the observation algorithm. Simulation and experimental results are given to validate the effectiveness of the proposed solution.

蒯松岩, 代尚方, 吴涛 , .

基于电流无差拍控制的PWM整流器

[J]. 电气传动, 2011,41(9):23-25.

[本文引用: 1]

Kuai Songyan, Dai Shangfang, Wu Tao , et al.

PWM rectifier based on current no-beat control

[J]. Electric Drive, 2011,41(9):23-25.

[本文引用: 1]

Xu Y, Zhang Q, Deng K .

One-cycle control strategy for dual-converter three-phase PWM rectifier under unbalanced grid voltage conditions

[J]. Journal of Power Electronics, 2015,15(1):268-277.

DOI:10.6113/JPE.2015.15.1.268      URL     [本文引用: 1]

高学军, 李克成, 佘小莉 .

基于重复控制方法的三相P WM整流器控制策略研究

[J].通信电源技术, 2014(3):17-19.

[本文引用: 1]

Gao Xuejun, Li Kecheng, She Xiaoli .

Research on control strategy of three-phase PWM rectifier based on repetitive control method

[J]. Telecommunication Power Technology, 2014(3):17-19.

[本文引用: 1]

Zhang Y, Xie W, Li Z , et al.

Model predictive direct power control of a PWM rectifier with duty cycle optimization

[J]. IEEE Transactions on Power Electronics, 2013,28(11):5343-5351.

DOI:10.1109/TPEL.2013.2243846      URL     [本文引用: 1]

This paper proposes an improved model predictive direct power control (MPDPC) for a pulse width modulation (PWM) rectifier by using a duty cycle control. The conventional MPDPC achieves good steady-state performance and quick dynamic response by selecting the best voltage vector, which minimizes the errors between the reference power and the real power. However, due to the limited number of voltage vectors in a two-level converter, the sampling frequency has to be high to achieve satisfactory performance. This paper introduces the concept of a duty cycle control in the MPDPC by allocating a fraction of control period for a nonzero voltage vector and the rest time for a zero vector. The nonzero vector is selected by evaluating the effects of each nonzero vector and its duration is obtained based on the principle of power errors minimization. Simulation and experimental results prove that, compared to the conventional MPDPC, the proposed MPDPC with duty cycle achieves further steady-state performance improvement without affecting the dynamic response at a small cost of control complexity increase.

周鑫, 郭源博, 张晓华 , .

基于自适应跟踪控制的三相电压型PWM整流器

[J]. 中国电机工程学报, 2010,30(27):76-82.

URL     [本文引用: 1]

针对三相电压型脉宽调制(pulse width modulation,PWM)整流器交流侧电感电阻、开关器件等效电阻和频率等参数不确定性带来的控制系统稳态误差较大等问题,提出一种自适应跟踪控制算法。通过对PWM整流器直接功率控制系统建模与分析,证明这类欠驱动系统符合L2-增益干扰抑制定理的条件。根据L2-增益干扰抑制定理,得出系统自适应率,并给出自适应跟踪控制算法实现过程。仿真与实验结果表明,所设计的自适应跟踪控制系统可实现PWM整流器单位功率因数控制,并具有动态响应速度快、无稳态误差等优点,特别是对于网侧等效电阻和频率的不确定性表现出很好的自适应性和鲁棒性。

Zhou Xin, Guo Yuanbo, Zhang Xiaohua , et al.

Three-phase voltage-type PWM rectifier based on adaptive tracking control

[J]. Proceedings of the CSEE, 2010,30(27):76-82.

URL     [本文引用: 1]

针对三相电压型脉宽调制(pulse width modulation,PWM)整流器交流侧电感电阻、开关器件等效电阻和频率等参数不确定性带来的控制系统稳态误差较大等问题,提出一种自适应跟踪控制算法。通过对PWM整流器直接功率控制系统建模与分析,证明这类欠驱动系统符合L2-增益干扰抑制定理的条件。根据L2-增益干扰抑制定理,得出系统自适应率,并给出自适应跟踪控制算法实现过程。仿真与实验结果表明,所设计的自适应跟踪控制系统可实现PWM整流器单位功率因数控制,并具有动态响应速度快、无稳态误差等优点,特别是对于网侧等效电阻和频率的不确定性表现出很好的自适应性和鲁棒性。

张辉, 谭国俊, 鱼瑞文 .

三相PWM整流器H鲁棒控制策略研究

[J]. 电力电子技术, 2011,45(11):64-66.

[本文引用: 1]

Zhang Hui, Tan Guojun, Yu Ruiwen .

Research on H robust control strategy of three-phase PWM rectifier

[J]. Power Electronics, 2011,45(11):64-66.

[本文引用: 1]

刘波, 申群太 .

三相电压型PWM整流器的滑模变结构控制

[J]. 自动化技术与应用, 2010,29(4):81-84.

[本文引用: 1]

Liu Bo, Shen Quntai .

Sliding mode variable structure control of three-phase voltage-type PWM rectifier

[J]. Automation Technology and Application, 2010,29(4):81-84.

[本文引用: 1]

Bao X, Zhuo F, Tian Y , et al.

Simplified feedback linearization control of three-phase photovoltaic inverter with an LCL filter

[J]. IEEE Transactions on Power Electronics, 2013,28(6):2739-2752.

DOI:10.1109/TPEL.2012.2225076      URL     [本文引用: 1]

The conventional grid-connected photovoltaic (PV) inverter is controlled by a dual-loop control strategy in synchronous reference frame, and the controllers are designed for steady-state operating point based on the small signal model by neglecting the high-order and coupling terms. However, in an LCL filter, the coupling terms are complicated due to the dq transformation which will affect the dynamic performance. In this paper, an innovative simplified feedback linearization (SFL) control strategy is proposed for the PV inverter with the LCL filter, which offers satisfactory performance, particularly, in decoupling the control system, improving the dynamic performance, and enhancing the adaptability. Furthermore, the SFL controllers are simpler than the high-order tracking controllers used in conventional feedback linearization control. The detailed simplification process and accurate transfer functions for SFL control strategy have been presented, and the performance comparisons between the proposed SFL control strategy and the classical dual-loop method are carried out to show the characteristics of the proposed control algorithm. Finally, a laboratory prototype of a 150-kW PV inverter with the LCL filter has been implemented to test the feasibility and effectiveness of the proposed strategy. The proposed SFL control strategy can also be applied to a higher order system or other power converters.

赵绍刚, 李秀娟, 漆随平 .

基于逆系统方法的三相PWM整流器控制

[J]. 电力自动化设备, 2006,26(11):46-49.

[本文引用: 1]

Zhao Shaogang, Li Xiujuan, Qi Suiping .

Control of three-phase PWM rectifier based on inverse system method

[J]. Electric Power Automation Equipment, 2006,26(11):46-49.

[本文引用: 1]

Diao L, Liu Z, Sun D , et al.

Modeling and stability analysis of AC drive system based on lyapunov theory

[J]. Journal of Beijing Jiaotong University, 2010,34(5):32-36.

[本文引用: 1]

Song P, Ma W, Li Y .

Controller designing of PWM rectifier based on the EL passivity model

[J]. Electrical Engineering, 2015: 97.

[本文引用: 1]

Wang J, Yin H .

Passivity based controller design based on EL and PCHD model

[J]. Procedia Engineering, 2011,15(15):33-37.

DOI:10.1016/j.proeng.2011.08.008      URL     [本文引用: 1]

Trabelsi R, Khedher A, Mimouni M F , et al.

Backstepping control for an induction motor using an adaptive sliding rotor-flux observer

[J]. Electric Power Systems Research, 2012,93(1):1-15.

DOI:10.1016/j.epsr.2012.06.004      URL     [本文引用: 1]

Feng G .

Analysis and synbook of fuzzy control systems: a model-based approach

[M]. CRC PressInc., 2010.

[本文引用: 1]

黄卫华 . 模糊控制系统及应用[M]. 北京: 电子工业出版社, 2012.

[本文引用: 1]

谭涛, 任开春, 陈熙隆 , .

模糊神经网络技术

[J]. 重庆高教研究, 2011,30(1):71-74.

[本文引用: 1]

Tan Tao, Ren Kaichun, Chen Xilong , et al.

Fuzzy neural network technology

[J]. Chongqing Higher Education Research, 2011,30(1):71-74.

[本文引用: 1]

Xu Y, Zhang Q, Deng K .

One-cycle control strategy for dual-converter three-phase PWM rectifier under unbalanced grid voltage conditions

[J]. Journal of Power Electronics, 2015,15(1):268-277.

DOI:10.6113/JPE.2015.15.1.268      URL     [本文引用: 1]

Wang J, Zhang M, Zhang J , et al.

Backstepping-based direct power control for PWM rectifier under unbalanced grid voltage conditions

[J]. Taiyangneng Xuebao/acta Energiae Solaris Sinica, 2017,38(11):2998-3004.

[本文引用: 1]

张学, 裴玮, 邓卫 , .

电网电压不平衡情况下三相并联型PWM整流器的控制策略

[J]. 电网技术, 2018,42(1):330-337.

[本文引用: 1]

Zhang Xue, Pei Wei, Deng Wei , et al.

Control strategy of three-phase parallel PWM rectifier under unbalanced grid voltage

[J]. Power System Technology, 2018,42(1):330-337.

[本文引用: 1]

程启明, 程尹曼, 王鹤霖 , .

三相电流型PWM整流器的控制方法发展综述

[J]. 华东电力, 2013,41(2):405-411.

[本文引用: 1]

Cheng Qiming, Cheng Yinman, Wang Helin , et al.

Development of control methods for three-phase current-mode PWM rectifiers

[J]. East China Electric Power, 2013,41(2):405-411.

[本文引用: 1]

郭会鸣, 席自强, 傅仲佳 , .

基于RBF神经网络的滞环控制方法的研究

[J]. 电气时代, 2012(2):72-74.

[本文引用: 1]

Guo Huiming, Xi Ziqiang, Fu Zhongjia , et al.

Research on hysteresis control method based on RBF neural network

[J]. Electric Age, 2012(2):72-74.

[本文引用: 1]

/