电气工程学报, 2015, 10(5): 10-19 doi:

综述

海上风电场雷击演化物理机制的研究综述

郭子炘1, 李庆民1, 闫江燕1, 马宇飞1, SiewWahHoon2

1.华北电力大学 新能源电力系统国家重点实验室 北京 102206

2.The University of Strathclyde Glasgow G1 1XQ UK

Summary of Research on Physical Evolution Mechanism of Lightning Discharge of Offshore Wind Farms

Guo Zixin1, Li Qingmin1, Yan Jiangyan1, Ma Yufei1, Siew Wah Hoon2

1.State Key Lab of Alternate Electrical Power System with Renewable Energy Source North China Electric Power University Beijing 102206 China

2.The University of Strathclyde Glasgow G1 1XQ UK

责任编辑: 郭丽军

收稿日期: 2015-04-22   网络出版日期: 2015-05-25

基金资助: 国家自然科学基金国际重点合作项目资助.  51420105011

Received: 2015-04-22   Online: 2015-05-25

作者简介 About authors

郭子炘 男 1992年生,硕士研究生,主要从事海上风电场雷击防护领域的研究工作。(guozixin @126.com)

李庆民 男 1968年生,博士,教授,博士生导师,主要从事高电压与绝缘技术、电力系统防雷技术领域的研究工作。(lqmeee@ncepu.edu.cn)

摘要

海上风力资源以其自身优势与丰富的储量,已成为未来风力发电重要的发展方向。随着陆上风力发电的饱和,风力发电逐渐呈现出向海上发展的趋势。但因海上风电具有不同于陆上的特点,许多关键问题有待进一步研究解决,尤其是海上风电机组极易遭受雷击,而雷电灾害是威胁风力发电安全的重要因素。对此本文从海上风电场的机组尺寸、地理位置和海洋环境等方面归纳总结了海上风电场雷击防护的特点,从雷电先导发展机理、叶片接闪器与导流通道雷击放电物理特性、雷击风机叶片机械爆裂损伤机理和海上风电机组雷电强场电磁暂态过程等方面分析了国内外现有海上风电雷击演化物理机制方面的研究现状,并据此提出海上风电防雷方面有待深入研究的四个课题方向。

关键词: 海上风电 ; 雷电物理 ; 先导发展 ; 放电特性 ; 叶片爆裂机制

Abstract

Offshore wind power has become the most important development direction of wind energy, due to its advantages and the vast offshore wind resources. As a saturated industry, the onshore wind farm witnesses the flourish of offshore ones. However, there are still a mess of key issues remained to be solved, which attribute to the difference between offshore wind power generation and onshore one, one of which is that wind turbines are particularly vulnerable to lightning strokes, and it is one of severest threatens to the security of wind farms. This paper summarizes the characteristics of offshore wind farms in the aspects of the dimension, location of wind turbines and its marine environment. The recent progress of physical evolution mechanism of lightning discharge including the mechanism of leader propagation, lightning discharge characteristics of receptor and down conductors, damage mechanism of wind turbine blades and electromagnetic transient process of offshore wind turbines is also introduced to proposethe potential frontier subjectin this field.

Keywords: Offshore wind power ; lightning physics ; leader progress ; flashover characteristic ; damage mechanism of wind turbine blades

PDF (3934KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

郭子炘, 李庆民, 闫江燕, 马宇飞, SiewWahHoon. 海上风电场雷击演化物理机制的研究综述. 电气工程学报[J], 2015, 10(5): 10-19 doi:

Guo Zixin. Summary of Research on Physical Evolution Mechanism of Lightning Discharge of Offshore Wind Farms. Journal of Electrical Engineering[J], 2015, 10(5): 10-19 doi:

1 引言

风力发电是目前世界上技术发展最成熟,规模化开发潜力最大及商业发展前景最广阔的可再生能源发电方式。截止2014年底,全球累计风电装机容量达36 955.3万kW,中国并网装机容量达到9 637万kW,累计风电装机容量为11 460.9万kW,占比31%居世界首位,如图1所示。全球累计风电装机容量连续10年保持两位数以上增长,中国更是连续10年以超过20%的速度增长。2014年全球新增装机容量中,中国以23 196 MW居首位,占比45.1%,创历史新高[1]

图1

图1   2004〜2014年全球及中国累计风电装机容量

Fig.1   Global and China cumulative installed wind capacity 2004~2014


陆上风力资源一直是风电开发的主要对象,且技术相对成熟,但近年来陆上风电发展受建设用地、并网条件等因素的制约日益突显。海上风力资源储量巨大,相较陆上风力资源具有风速高、风切变低、湍流低且产出高等显著优点[2],并且由于海上环境对风机的噪声污染、高度、视觉影响和运输条件等要求不像陆上那样严格[3,4,5],以欧洲各国为首的风电大国逐渐把目光投向潜力更大的海上风电。截止2014年底,欧洲11国海上风电装机容量804.5万kW[6],而中国已成为海上风电发展增速最快的国家之一,截止2014年底,已建成的海上风电项目装机容量共计65.8万kW[7]。由于幅员辽阔,海岸线长,海上风能资源比较丰富,中国尤其适合发展海上风电。中国的海上风电资源超过750GW,远高于陆上风电潜在的253GW[8]。根据中国气象局风能资源调查统计结果,中国5~25m水深线以内近海区域,海平面以上50m高度风电可装机容量约200GW,70m以上可装机容量约500GW。中国沿海滩涂地带、岛屿及近海具备非常好的规模化风电开发条件。“十二五”期间,海上风电将进入快速规模化开发阶段,成为未来行业发展的主要方向。

雷击是严重威胁海陆风力发电场安全的问题之一,雷击击中风机后,雷电流将会对风机叶片等结构造成严重破坏,导致高昂的经济损失,如维修费用、人工成本和停运损失等。风电机组雷击事故如图2所示。美国德克萨斯州、堪萨斯州和伊利诺伊州风电场长达5年的观测数据指出,508台风机每台平均8.4年遭受一次雷击,以风机寿命20年计算,其运行服役期间因雷击导致的叶片损伤将发生2~3次[9]。日本Nikaho风电场实测数据显示,风电场内装设的6台固定照相机一年中记录到152次雷击放电,其中128次直接击中风机,且多台风机在一年中多次被击中,最多达20次;现场观测的64次雷击中有23次同时击中两台以上风机[10]。来自海南东方风电场的数据显示,仅风机桨叶的雷击损坏率就达到5.56片/(百片·年)。与陆上风电场相比,海上风电机组高度更高,所处环境更为空旷,使得海上风电机组更易遭受雷击。大容量海上风电机组的规模化建设对海上风电场防雷设计提出了新的要求,亟需对规模化海上风电场的开展有针对性的基础研究。

图2

图2   风电机组雷击事故

Fig.2   Lightning accident of wind turbine


本文从海上风电机组结构、所处位置环境和海上雷电情况等多个方面归纳概括了海上风电场雷击防护特点、与陆上风电场的区别,并强调了相关研究的紧迫性、必要性。将海上风电场雷击问题分为四个部分:雷电先导发展机理,叶片接闪器与导流通道雷击放电物理特性、雷击风机叶片机械爆裂损伤机理和海上风电机组雷电强场电磁暂态过程,分别分析了国内外研究现状,结合海上风电场雷击特点与仍需解决的问题,提出了海上风电场雷击演化物理机制研究的四个前沿课题,为进一步深入研究提供方向。

2 海上风电场雷击特点

2.1 海上风电机组特点

2.1.1 尺寸

风力发电机组经过几十年发展,机组容量从最初的几十千瓦不断增大,至现在的10MW。随着风电机组容量的不断提高,风机的轮毂高度、风轮直径不断增大,整机高度突破200m,风轮直径超过150m[11],如图3所示。机组容量直接决定了机组高度、风轮直径,见下。相比陆上机组,海上风电机组单机容量更大、高度更高且风轮直径更大。

图3

图3   风力发电机组高度、风轮直径发展趋势

Fig.3   Trend of height of wind turbines and rotor diameter


   风机容量与风机高度关系

Tab.  Relation between wind capacity and height of wind turbines

机组容量/MW轮毂高度/m风轮直径/m年产电量/(GW·h)
1.560~11060~803.5
380~13080~1007.5
6130~150110~13015
10140~170140~15025

新窗口打开| 下载CSV


现有国内外风电机组防雷研究、观测结果及国际标准大多基于尺寸较小的机组,由于场地、设备等限制,相关试验试品多采用局部样品[12,13]。如针对叶片雷电易击点试验,给出的观测数据显示90%的损伤发生在叶片尖部4m内,其余的10%发生在距叶片5〜10m范围内[8];IEC61400—24中建议采用3~5m全尺寸叶尖样品[14]。当风电机组高度从过去的不足100m增大到超过200m,叶片半径从30〜40m增大到超过70m,过去基于小型机组得到的观测数据、试验方法和试验结果不能很好地解释并应用于现在的实际情况。针对大容量海上风电机组雷电防护,机组尺寸增大带来的物理机制、试验方法方面的变化需要得到充分重视。

2.1.2 地理位置

世界上已建成的海上风电场绝大多数位于距离海岸大约20km,水深20m左右的近海。图4给出欧洲海上风电场分布情况[3]。中国已建成、在建的海上风电场倾向于选择建设成本较低,距离用电负荷较近的潮间带[15]。与陆上风电场相比,海上风电场机组不需要埋设大量接地系统,自身的金属、混凝土基座为其提供了良好的接地性能。同时在计算机组接地电阻,暂态计算选取的参数不同于陆上风电机组。能否将已有研究成果应用于海上风电场仍需进一步研究。

图4

图4   欧洲海上风电场分布情况

Fig.4   Distance and depth of online, consented and under construction offshore wind farms in Europe


2.1.3 污秽情况

海洋环境根据腐蚀情况可分为5个区域:海洋大气区、浪花飞溅区、海水潮差区、海水全浸区和海底泥土区。图5为海上风力发电机组与海洋腐蚀环境对应位置[15,16]。其中风机叶片与机舱位于湿度大,盐分高的海洋大气区,风机叶片多为玻璃纤维增强材料(GFRP)或碳纤维增强材料(CFRP),海洋大气区中潮湿空气的盐分易在桨叶表面集聚。相比陆上环境,海上风电机组桨叶绝缘能力下降,使得接闪器引闪效率降低,雷击可能直接击中叶片而不是接闪器,轻度损伤则叶片表面灼伤,使叶片寿命大大缩短,并影响空气动力学性能;中度损伤叶片表面脱落,风机退出运行,严重的会造成叶片边缘破裂、撕裂,甚至造成叶片断裂、烧毁[17]。海上风电场所处潮湿、高盐环境与陆上差异较大,遭受雷击后果更为严重。

图5

图5   海上风力发电机组与海洋腐蚀环境对应位置

Fig.5   Ocean environment corrosion sections and offshore wind turbine structure


2.2 海上雷电特点

海上雷电环境与陆上不同,尤其是海陆交界区域。文献[18]中指出,我国近海海域闪电平均密度是全球海洋的5倍,并且海陆交界处为闪电密度高值区。潮间带特殊的地理条件在一定条件下使得该区域的雷电活动加强[19]。雷电分布受季节变化影响,日本冬季雷暴正地闪的比例最高可达100%, 通常在40%~90%之间[20]。而由于遭受正极性闪电时迎面先导不一定从接闪器产生,风机受到的伤害比负极性的更为严重[21]。且冬季雷云的高度与夏季相比较低,当雷云高度降低时,地面附近场强急剧升高;大部分风机遭受雷击发生在冬季[22]。海上风电机组高度较陆上更大,更易遭受上行雷击,高度为150m且有效高度为300m的风机,上行雷击占总雷击的80%[23],将风机移至海上、冬季雷云高度降低都会增加上行雷击的风险。

海上风电场机组运输难度大、安装作业要求高且维护养护费用高昂,与陆上风电场相比,单位千瓦造价水平甚至高出80%[24]。对于离岸较远的近海风电场,风电机组的运输、安装需要大型特种船只,对安装时海上风浪、气象等有较高要求。图6为西门子海上风机安装船Sea Installer号。对于离岸较近的潮间带风电场,由于施工地点在涨潮时被海水淹没,退潮时露出陆地,常规水陆设备均无法正常施工作业,只能通过构筑永久性或临时性通道进行运输安装[25]。当仅考虑海浪冲击、海水腐蚀等非破坏性伤害时,海上风电场的年运行维护成本不低于机组成本的5%。若考虑雷击等破坏性伤害,则机组的维修费用、零件更换成本将大大增加,对于潮间带风电场,甚至需要重新构筑通道进行维修。据统计,海上风电机组的运行维护成本约为陆上机组的2~4倍,甚至更高[26]。即使是机组的轻微损伤,带来的维修费用巨大,而海上风电场机组遭受雷击损坏的后果将会十分严重。因此对海上风电机组的雷电防护提出了比陆上风电场更高的要求。

图6

图6   西门子海上风机安装船Sea Installer号

Fig.6   Siemens offshore wind farm installation vessel "Sea Installer"


3 现有海上风电防雷研究现状

3.1 海上风电场雷电先导发展机理

目前风电场防雷研究中,多采用基于陆地建筑物引雷性能研究的雷击评估方法[27],未引入空间电荷分布对先导起始与发展特性作为考虑因素。现有研究对象多为单体风机,从风电场整体角度开展的研究较少,而海上风电场机组密度较陆上更大,单体风机高度更高,风机之间的相互屏蔽性能成为防雷设计的考虑因素之一。

雷电下行先导的发展在距风机较高位置处具有明显的随机性,而随着先导的向下延伸,当到达临界位置,即雷击距时,下行先导会向风机定向发展。有研究表明雷击距的大小取决于雷电流幅值的大小[28],但雷击下行先导的物理机制尚不清晰,特别是海洋环境因素对雷电先导的影响仍待进一步研究。

当雷电下行先导向机组发展时,风机周围的电场得到加强,发生畸变,叶片尖端、机舱尾部避雷针、机舱前段和轮毂均有可能产生并发展上行先导[29],由风机产生的上行雷雷击如图7所示[30]。不同位置产生的多条上先导可能同时向上发展,拦截雷电下行先导,形成竞争,且这种上行先导竞争拦截雷电先导的现象随着风电机组高度的增加而愈加明显,因此在风机先导发展模拟中还应纳入多先导的相互竞争机制。准确评估风机上行先导起始过程是研究雷电电磁暂态对风机影响,进行风机防雷设计的前提[31,32]。风机自身特性决定了其上行先导起始的研究与输电线路不尽相同,如叶片的不断转动对空间电场分布的影响,风机叶片几何形态对附近电场畸变的影响,风电场中风机群多先导相互竞争的影响等。文献[33]针对桨叶旋转对接闪过程的影响进行了试验,得出旋转状态下风机遭受雷击的概率降低,但与文献[34]给出的仿真结果相矛盾。日本学者对风电场雷击现象进行了长期观测记录,并建立了风机雷击先导概率模型,但相关研究多针对单体风机,缺少对风机群多先导相互竞争机制的深入研究[35,36]

图7

图7   由风机产生的上行雷雷击

Fig.7   Upward lightning stroke induced by wind turbines


针对海上风电场防雷的研究,海上环境的电场强度、雷电电荷密度、先导通道长度及发展速度等雷电物理量必不可少,但国内外尚缺少有针对性的海上雷电物理量探测数据。

3.2 海上风机叶片接闪器与导流通道雷击放电物理特性

雷击发生时,风机叶片是最易接闪的部位,桨叶接闪器是目前风机厂商普遍采用的雷击保护措施。丹麦、日本、美国和德国等国学者通过长期观察记录风机桨叶遭受雷击受损的情况,将不同雷击损伤根据严重程度进行分类[37],总结了桨叶在有无接闪器时的损伤情况[38,39]

现有研究在分析风机桨叶上可能遭受雷击区域时,普遍采用滚球法和保护角法,并据此指导接闪器的优化布置,然而这些方法并未考虑上行先导的影响,而上行先导对雷电接闪过程有重要影响。文献[21]指出,当有接闪器时,放电仍可能进入叶片腔体内部,这取决于叶片角度、放电发展方向。为了提高接闪器保护范围及接闪效率,国内外学者提出了许多思路,文献[13]提出在桨叶腔内接闪器附近加装金属导体,利用腔内导体对接闪过程的影响增加接闪器接闪效率。文献[40]通过计算接闪器不同布置方法下风机叶片的电位分布,对接闪器进行优化布置。但对于接闪器的接闪效率、优化布置缺少系统理论的研究。

IEC 61400—24对叶片防雷保护方法推荐了多种方案,如图8所示。目前生产厂家多采用接闪器与内部引下线的设计,相关研究也多针对该种方法展开。相比之下外导体、外置引下线因其自身优良防雷特点为桨叶防雷保护提供新思路[41]。此外叶片的旋转致使雷击电弧被吹离接闪器,向叶片边缘移动,甚至发展至临近叶片或叶片根部,对桨叶造成严重破坏[11],相应防护措施仍需完善。

图8

图8   IEC 61400-24推荐的叶片防雷保护方法

Fig.8   Lightning protection methods for wind turbine blades recommended by IEC 61400-24


对于海上风电场,风机长期处于潮湿环境,叶片表面易附着水分、盐分,对于接闪器性能产生影响,而对此开展的研究较少。海上风电场维护成本高昂,对风机防雷性能提出了更高要求,有必要针对接闪器及导流通道的空间放电物理特性开展更深入系统的研究,进一步提高接闪器效率及引下线导流通道防雷性能,提高海上风电机组抵御雷击损伤的能力。

3.3 雷击风机叶片机械爆裂损伤机理

雷电击中风机叶片后产生的破坏主要由电弧热效应和机械应力作用产生。雷电击中风机叶片后,雷电流在桨叶壳体表面形成高温电弧,灼伤弧道附近的叶片材料,同时陡升的高温使桨叶内部的温度急剧升高,使气体受热膨胀,造成桨叶内部产生高压力冲击波,对叶片壳体产生机械损伤[42,43]。高温电弧与高压力冲击波共同作用,致使叶片产生裂痕,严重时甚至造成爆裂,如图9所示。此外,压力冲击波的破坏范围不仅局限在接闪叶片,其可通过轮毂传播至其他叶片并致其受损。

图9

图9   遭受雷击后风机叶片爆裂

Fig.9   Blade rupturing caused by lightning stroke


由于风机叶片由复合材料制成,层间残留有水蒸气,当叶片遭受雷击腔内温度陡升时,水蒸气受热膨胀,有可能导致叶片表面爆裂。文献[44]对叶片内水蒸气受热膨胀展开研究,不同叶片材料,不同位置水蒸气分布不同,在雷击导致的高温电弧作用下,因不平衡膨胀导致不同损伤。海上环境相较陆上更为潮湿,桨叶复合材料层间更易残留水蒸气,由此产生的叶片损伤更为严重。

雷电流流经叶片内部引下线时会产生巨大的电应力,使得引下线导体瞬间承受巨大应力而形变,造成叶片爆裂损坏。因此文献[45]提出将引下线外置的方法,解决内置引下线造成的叶片爆裂问题,并对外置引下线对叶片造成的空气动力学影响进行了仿真计算。目前针对这一关键问题的研究尚缺乏系统的理论解释。考虑到海上风电场所处高湿度高盐分环境,叶片外表面易集聚导电污秽,雷击叶片引发闪络放电的现象更为严重[46]

3.4 海上风电机组雷电强场电磁暂态过程

风电机组遭受雷击后,雷电流沿桨叶、机舱通路、塔筒和接地系统流入大地,如图10所示。由于雷电流传播速度极快,由此产生的暂态电位升高与电磁脉冲将通过传导、耦合和感应等方式,对机组内部的电气设备、控制系统产生干扰以及电涌过电压等强电磁效应,造成设备损坏。特别是对于风机机组的控制系统,由大量先进高集成度微电子器件构成,对雷击电磁效应的抵抗能力差,损坏后将导致机组控制失效,退出运行,造成严重的经济损失[47]

图10

图10   风电机组遭受雷击后雷电流通路

Fig.10   The path of lightning current of wind turbine


目前国内外针对风机遭受雷击所产生的雷电暂态和强磁磁场效应的研究,还处于探索阶段,相应研究给出的理论计算模型大多针对机组中某一方面进行分析,如专门针对风机机舱内电磁环境进行分析并提出抑制措施[48,49];仅分析接地电极尺寸、土壤电阻率对接地系统暂态特性的影响[50,51,52]。现有研究缺少对风电机组一体波阻抗特性的深入分析及机组电磁效应的整体建模仿真,使计算雷电流在机组内部反射、机组的电位分布时产生困难。

对于海上风电机组,相比陆上机组其高度更高,接地系统接地阻抗更小,当遭受雷击时,雷电流在机组内部的波过程更为复杂,需要综合考虑叶片、机舱、塔筒和接地系统对暂态过程的影响,建立一体的机组雷电暂态分析模型。且目前关于海上风电机组遭受雷击后各部分雷电暂态响应特性、内部电磁场空间分布及内部线缆的感应电涌水平等关键问题的研究报告较少,相关问题的研究具有很大发展空间。

4 海上风电防雷技术的前沿课题

基于现有关于风力发电的研究成果,结合海上风力发电的特点、存在的问题,海上风力发电研究的主要前沿课题为:

(1)海上风电场雷电先导物理机制与演化动力学。海洋气候背景下,雷击先导演化的动态物理机制的揭示,将为海上风电机组的防雷保护技术奠定理论基础。海上风电场先导概率模型的建立将会为风机防雷保护设计提供依据和参考。

(2)海上风电机桨叶接闪器与导流通道系统的空间放电物理特性与结构优化。通过对风机桨叶接闪器与导流通道的空间放电物理特性的研究,揭示接闪器与导流通道对桨叶接闪放电的影响机理,并考虑海上风电机组所处环境因素影响,由此提出接闪器——导流通道系统综合优化配置方法,将提高海上风机防雷性能,减小风机遭受雷击损坏停运概率,大大降低运行维护成本,保证海上风电场持续可靠运行。

(3)雷击桨叶的沿面电弧热效应与机械爆裂机理。通过建立雷击过程中桨叶腔体内部电弧热效应、电磁效应模型,揭示热、气、磁综合作用下风机叶片机械爆裂损伤机理,为优化设计叶片结构,降低桨叶雷击损伤概率提供理论支撑。雷击桨叶沿面闪络放电模型的建立将会为叶片防雷设计提供重要参考。

(4)海上风电机组雷电强场电磁效应与防护技术。海洋环境下风电机组遭受雷电冲击时电磁暂态过程一体化模型的建立,可以提供机组暂态电磁场空间分布、控制系统的感应电涌过电压特性,为海上风电机组的内部雷电电涌防护提供设计依据。

5 结论

(1)海上风电场的情况不同于陆上,雷击危害更加严重。海上风电场机组规模更大、地理环境更复杂,海洋环境下污秽情况更加严重,影响机组绝缘水平,遭受雷击风险更大;机组安装维修成本更高、难度更大,雷击受损后停运周期更长,带来的经济、社会损失更大;海上风机更易遭受上行雷击,造成的伤害也更加严重。因此对海上风电机组的雷电防护提出了比陆上风电场更高的要求。

(2)现有研究适用性受到考验。海上风电场的特点不同于陆上,使得部分基于小型机组得到的研究成果不能很好地解释现在的实际情况,制定的标准不能充分指导厂家制造、检验机组性能以符合海上的工作环境,能否将已有研究成果应用于海上仍需进一步研究。新情况下,现有试验仿真方法的等价性、有效性有待确定。一些机组同时服役于陆上和海上风电场,其性能指标能否满足海上工况的要求,需要新的研究来论证、新的标准来检验。

(3)仍需解决的问题还很多。目前关于雷击演化物理机制的研究仍不完善,对于叶片接闪器效率、布置优化及叶片机械爆裂机理的系统理论化研究较少,机组雷电暂态过程缺少整体分析,许多问题仍有待解决。再加之海上风电场的特殊性带来了如海洋环境对机组性能的影响等新问题,相关研究具有广阔前景。

参考文献

Global Wind Energy Council (GWEC).

Global Wind 2014 Report

[R]. Brussels, Belgium, 2015.

[本文引用: 1]

李晓燕, 余志 .

海上风力发电进展

[J]. 太阳能学报, 2004,25(1):78-84.

[本文引用: 1]

Li Xiaoyan, Yu Zhi .

Developments of offshore wind power

[J]. ActaEnergiae Solaris Sinica, 2004,25(1):78-84.

[本文引用: 1]

The European Wind Energy Association (EWEA).

Wind in our sails

[R]. Brussels, Belgium, 2011.

[本文引用: 2]

王锡凡, 卫晓辉, 宁联辉 , .

海上风电并网与输送方案比较

[J]. 中国电机工程学报, 2014,34(31):5459-5466.

DOI:10.13334/j.0258-8013.pcsee.2014.31.001      URL     [本文引用: 1]

风力发电是新能源发电技术中最成熟和最具规模开发条件的发电方式之一。大容量远距离的海上风电是未来风电发展的趋势。介绍海上风电系统的3种并网技术以及输电方式:高压交流、高压直流输电(high voltage direct current,HVDC)以及分频输电技术。工频交流海上风电系统一般适用于小规模近海风电场,HVDC和分频输电适用于大规模远距离海上风电场。分频海上风电系统是一种具有自主知识产权的本土技术,在目前的技术和经济条件下,分频海上风电系统是一种具有优势和竞争力的海上风电方案。主要对这3种海上风电并网的技术可行性、经济性以及效率等方面进行讨论,最后对海上风力发电技术进行总结和展望。

Wang Xifan, Wei Xiaohui, Ning Lianhui , et al.

Integration techniques and transmission schemes for off-shore wind farms

[J]. Proceedings of the CSEE, 2014,34(31):5459-5466.

DOI:10.13334/j.0258-8013.pcsee.2014.31.001      URL     [本文引用: 1]

风力发电是新能源发电技术中最成熟和最具规模开发条件的发电方式之一。大容量远距离的海上风电是未来风电发展的趋势。介绍海上风电系统的3种并网技术以及输电方式:高压交流、高压直流输电(high voltage direct current,HVDC)以及分频输电技术。工频交流海上风电系统一般适用于小规模近海风电场,HVDC和分频输电适用于大规模远距离海上风电场。分频海上风电系统是一种具有自主知识产权的本土技术,在目前的技术和经济条件下,分频海上风电系统是一种具有优势和竞争力的海上风电方案。主要对这3种海上风电并网的技术可行性、经济性以及效率等方面进行讨论,最后对海上风力发电技术进行总结和展望。

黄玲玲, 曹家麟, 符杨 .

海上风电场电气系统现状分析

[J]. 电力系统保护与控制, 2014,42(10):147-154.

DOI:10.7667/j.issn.1674-3415.2014.10.024      URL     [本文引用: 1]

Huang Lingling, Cao Jialin, Fu Yang .

Review of electrical systems for offshore wind farms

[J]. Power System Protection and Control, 2014,42(10):147-154.

DOI:10.7667/j.issn.1674-3415.2014.10.024      URL     [本文引用: 1]

The European Wind Energy Association (EWEA).

The European offshore wind industry-key trends and statistics 2014[R]. Brussels,

Belgium, 2015.

[本文引用: 1]

2014年中国风电装机容量统计

[J]. 风能, 2015(2):36-49.

[本文引用: 1]

China cumulative installed wind capacity 2014

[J]. Wind Energy, 2015(2):36-49.

[本文引用: 1]

王迪, 卢晓燕 .

海上风电机组控制系统研究

[J]. 电气应用, 2012(9):54-57.

[本文引用: 2]

Wang Di, Lu Xiaoyan .

Study on control system of offshore wind turbine

[J]. Electrotechnical Application, 2012(9):54-57.

[本文引用: 2]

Garolera A C, Madsen S F, Nissim M , et al.

Lightning damage to wind turbine blades from wind farms in U.S.

[J]. IEEE Transactions on Power Delivery, 2014(99):1.

[本文引用: 1]

Hachiya K, Hyodo H, Honjo N .

Lightning strike aspect from wind turbines in winter season-observation results at the Nikaho Kougen wind park in Japan

[C]. 2008 International Conference on Lightning Protection(ICLP), Uppsala, Sweden, 2008: 9a-4:1-7.

[本文引用: 1]

Radicevic B M, Savic M S, Badea I .

Impact of wind turbine blade rotation on the lightning strike incidence

[C]. 2012 IEEE International Conference on Lightning Protection (ICLP), Vienna, Austria, 2012.

[本文引用: 2]

江安烽, 任晓明, 孙伟 , .

风机叶片雷电易击点模型试验技术研究分析

[J]. 华东电力, 2013(12):2550-2555.

[本文引用: 1]

Jiang Anfeng, Ren Xiaoming, Sun Wei , et al.

Scale model experiment technology for lightning attachment points of wind turbine blades

[J]. East China Electric Power, 2013(12):2550-2555.

[本文引用: 1]

Minowa M, Sumi S I, Ito K , et al.

A study of lightning protection for wind turbine blade by using creeping discharge characteristics

[C]. 2012 IEEE International Conference on Lightning Protection (ICLP), Vienna, Austria, 2012.

[本文引用: 2]

IEC TR 61000-24.

Wind turbine generator systems- Part 24: Lightning protection TR 61000-24.Wind turbine generator systems- Part 24: Lightning protection

[S]. IEC, 2002.

[本文引用: 1]

李美明, 徐群杰, 韩杰 .

海上风电的防腐蚀研究与应用现状

[J]. 腐蚀与防护, 2014(6):584-589,622.

DOI:10.3390/ma13010111      URL     PMID:31881753      [本文引用: 2]

Given their outstanding versatile properties, multilayered anticorrosion coatings have drawn great interest from researchers in the academic and engineering fields. However, the application of multilayered coatings is restricted by some limitations such as low interlayer compatibilities, the harsh preparation process, etc. This work introduced a composite film fabricated on a 2A12 aluminum alloy surface, including an anodic oxide film, a sol-gel film, and a layer-by-layer (LBL) self-assembling film from bottom to top. The microstructure and elemental characterization indicated that the finish of the coating with the LBL film resulted in a closely connected multilayered coating with a smoother surface. The anticorrosion performance was systematically evaluated in the simulated corrosive medium and neutral salt spray environment. The integrated coating with the LBL film presented an excellent anticorrosion ability with system impedance over 108 Ω·cm2 and a self-corrosion current density two orders of magnitude lower than that of the other coatings. After the acceleration test in a salt spray environment, the multilayered coatings could still show a good protective performance with almost no cracks and no penetration of chloride ions. It is believed that the as-constructed multilayered coating with high corrosive properties and a fine surface state will have promising applications in the field of anticorrosion engineering.

Li Meiming, Xu Qunjie, Han Jie .

Progress of corrosion and protection for offshore wind power

[J]. Corrosion & Protection, 2014(6):584-589, 622.

DOI:10.3390/ma13010111      URL     PMID:31881753      [本文引用: 2]

Given their outstanding versatile properties, multilayered anticorrosion coatings have drawn great interest from researchers in the academic and engineering fields. However, the application of multilayered coatings is restricted by some limitations such as low interlayer compatibilities, the harsh preparation process, etc. This work introduced a composite film fabricated on a 2A12 aluminum alloy surface, including an anodic oxide film, a sol-gel film, and a layer-by-layer (LBL) self-assembling film from bottom to top. The microstructure and elemental characterization indicated that the finish of the coating with the LBL film resulted in a closely connected multilayered coating with a smoother surface. The anticorrosion performance was systematically evaluated in the simulated corrosive medium and neutral salt spray environment. The integrated coating with the LBL film presented an excellent anticorrosion ability with system impedance over 108 Ω·cm2 and a self-corrosion current density two orders of magnitude lower than that of the other coatings. After the acceleration test in a salt spray environment, the multilayered coatings could still show a good protective performance with almost no cracks and no penetration of chloride ions. It is believed that the as-constructed multilayered coating with high corrosive properties and a fine surface state will have promising applications in the field of anticorrosion engineering.

刘新 .

海上风电场的防腐涂装

[J]. 中国涂料, 2009(11):17-19,25.

URL     [本文引用: 1]

介绍了海上风电场的腐蚀环境,国外进行的试验方案及结果、规范要求等,推荐海上风电场不同部位的防腐涂装配套方案.

Liu Xin .

Anticorrosive coating of offshore wind farm

[J]. China Coatings, 2009(11):17-19, 25.

URL     [本文引用: 1]

介绍了海上风电场的腐蚀环境,国外进行的试验方案及结果、规范要求等,推荐海上风电场不同部位的防腐涂装配套方案.

Yokoyama S, Yasuda Y, Minowa M , et al.

Clarification of the mechanism of wind turbine blade damage taking lightning characteristics into consideration and relevant research project

[C]. 2012 IEEE International Conference on Lightning Protection (ICLP), Vienna, Austria, 2012.

[本文引用: 1]

王艳, 张义军, 马明 .

卫星观测的我国近海海域闪电分布特征

[J]. 应用气象学报, 2010(2):157-163.

URL     [本文引用: 1]

Using observation data of the optical transient detector and the lightning imaging sensor on satellites from April 1995 to April 2006, the spatial and temporal distribution of lightning activities in China offing sea area (including the Bohai Sea, the Yellow Sea, the East China Sea, the South China Sea and some parts of the Pacific in China’s terrestrial sea) are statistically examined. The relationship between the lightning activities and the sea temperature is also studied by combing those data with the reanalysis data from the NOAA optimum interpolation SST. The result indicates that the average flash densities in China offing sea area is 3.39 fl·km-2·a-1, which is about 5 times higher than the global ocean average value. The high flash density areas are mostly in the boundary of the land and the sea, especially in the sea areas around the islands, indicating the difference of lightning activity between the sea alongside land and the ocean. The lightning activities in the Bohai Sea and the South China Sea are more frequent than those in the Yellow Sea and the East China Sea. There is a clear tendency that the flash density in China offing sea area decreases gradually with the increasing of latitude and the distance off the coast. The flash densities in the sea around the Taiwan Island and the Bohai Sea are the highest. The lightning activity is most frequent in summer, then spring, and in winter it is rare. The sea temperature in the black tide area is higher in winter and spring, and the lightning activity is more frequent than the East China Sea and parallel ocean sea areas, indicating that the black tide area is a strong lightning activity area.The annual and diurnal change of lightning activities in China offing sea area take on a similar changing trend as that on the land of the same latitude. For the lightning activities of the Bohai Sea and the East China Sea, there’s one single peak, while in the South China Sea and the Yellow Sea, lightening activities take on the similar double peak trends as those in the land of subtropical zone.The lightning activities’ annual change is obviously positively correlated to the sea temperature in China offing sea area. But the flash activity is insensitive to the annual change of the sea temperature, indicating that the sea temperature’s annual change isn’t the main cause for lightning activities’ annual change.

Wang Yan, Zhang Yijun, Ma Ming .

Lightning activities in china offing sea area observed by satellite-based lightning imaging sensor

[J]. Journal of Applied Meteorological Science, 2010(2):157-163.

URL     [本文引用: 1]

Using observation data of the optical transient detector and the lightning imaging sensor on satellites from April 1995 to April 2006, the spatial and temporal distribution of lightning activities in China offing sea area (including the Bohai Sea, the Yellow Sea, the East China Sea, the South China Sea and some parts of the Pacific in China’s terrestrial sea) are statistically examined. The relationship between the lightning activities and the sea temperature is also studied by combing those data with the reanalysis data from the NOAA optimum interpolation SST. The result indicates that the average flash densities in China offing sea area is 3.39 fl·km-2·a-1, which is about 5 times higher than the global ocean average value. The high flash density areas are mostly in the boundary of the land and the sea, especially in the sea areas around the islands, indicating the difference of lightning activity between the sea alongside land and the ocean. The lightning activities in the Bohai Sea and the South China Sea are more frequent than those in the Yellow Sea and the East China Sea. There is a clear tendency that the flash density in China offing sea area decreases gradually with the increasing of latitude and the distance off the coast. The flash densities in the sea around the Taiwan Island and the Bohai Sea are the highest. The lightning activity is most frequent in summer, then spring, and in winter it is rare. The sea temperature in the black tide area is higher in winter and spring, and the lightning activity is more frequent than the East China Sea and parallel ocean sea areas, indicating that the black tide area is a strong lightning activity area.The annual and diurnal change of lightning activities in China offing sea area take on a similar changing trend as that on the land of the same latitude. For the lightning activities of the Bohai Sea and the East China Sea, there’s one single peak, while in the South China Sea and the Yellow Sea, lightening activities take on the similar double peak trends as those in the land of subtropical zone.The lightning activities’ annual change is obviously positively correlated to the sea temperature in China offing sea area. But the flash activity is insensitive to the annual change of the sea temperature, indicating that the sea temperature’s annual change isn’t the main cause for lightning activities’ annual change.

薛根元, 冯国标, 何凤翩 , .

闪电监测定位系统及其应用

[J]. 气象科技, 2004(4):274-277.

URL     [本文引用: 1]

在分析闪电混合交汇算法定位基本原理的基础上,介绍了绍兴市闪电监测与定位系统的基本结构、工作特点,并对监测定位信息的开发应用作了探讨.分析表明,绍兴市闪电监测定位系统作为集中闪电监测、定位、应用等功能的综合性系统,具有高集成、实时性、高精度、多用途和网络化的特点,它能够较准确地对闪电雷击进行定位,所获得的资料具有多方面的用途.通过对闪电监测定位资料的分析,可以发现某些闪电与雷击发生发展的规律,这对雷电灾害的预警预报具有重要作用.

Xue Genyuan, Feng Guobiao, He Fengpian , et al.

Research on application of thunder and lightning positioning system

[J]. Meteorological Science and Technology, 2004(4):274-277.

URL     [本文引用: 1]

在分析闪电混合交汇算法定位基本原理的基础上,介绍了绍兴市闪电监测与定位系统的基本结构、工作特点,并对监测定位信息的开发应用作了探讨.分析表明,绍兴市闪电监测定位系统作为集中闪电监测、定位、应用等功能的综合性系统,具有高集成、实时性、高精度、多用途和网络化的特点,它能够较准确地对闪电雷击进行定位,所获得的资料具有多方面的用途.通过对闪电监测定位资料的分析,可以发现某些闪电与雷击发生发展的规律,这对雷电灾害的预警预报具有重要作用.

张阳, 张义军, 孟青 , .

北京地区正地闪时间分布及波形特征

[J]. 应用气象学报, 2010(4):442-449.

URL     [本文引用: 1]

The temporal distribution and waveform characteristics for positive cloud to ground lightning (PCG) vary in different regions. The research on characteristics of PCG in Beijing Area is still not enough up to now. Based on the lightning location data from March to November in 2004 and 2005, the temporal distribution of PCG in Beijing Area is analyzed. The waveform characteristics are also investigated using the data of electric field change. The results show that from May to July there are more PCG happening than other seasons in Beijing Area. The PCG occupies 55.3% of all lightning events from March to May and from October to November, while the percentage of PCG is only 10.88% for the whole year. On the other hand, the distribution of PCG in Beijing also changes with time in a day, with a high frequency of PCG and a large percentage up to 16.2% during 15:00—21:00. It’s also found that the temporal distribution is inverse correlation between PCG and negative cloud to ground lightning (NCG) in a day. There is a decreasing tendency of PCG lightning with an increase of cloud to ground (CG) lightning. For most of PCG there is only one return stroke and the percentage of PCG with multiple return strokes is only 3.89%. The PCG with multiple return strokes mainly occurs in May and November and during 15:40—17:20 in a day.The waveform parameters and the characteristics of continuing current are given by statistics. The rising time of return stroke is between 5—28 μs, with a mean value of 11.55 μs. The time of slow front is between 2.8—23.6 μs with 9.41 μs on average. The ratio between the amplitude of slow front and the peak of return peak is 53%. The time of recovering to zero is 43.97 μs and the depth of the dip is 20.75%. The average value of return stroke peak after being normalized to 100 km is 13.66 V·m-1. Most of PCG contain continuing current process. The percentage of PCG with continuing current is 69.2%, 48.7% of which lead to long continuing current. The average lasting time of continuing current is 113 ms.

Zhang Yang, Zhang Yijun, Meng Qing , et al.

Temporal distribution and waveform characteristics of positive cloud-to-ground lightning in Beijing area

[J]. Journal of Applied Meteorological Science, 2010(4):442-449.

URL     [本文引用: 1]

The temporal distribution and waveform characteristics for positive cloud to ground lightning (PCG) vary in different regions. The research on characteristics of PCG in Beijing Area is still not enough up to now. Based on the lightning location data from March to November in 2004 and 2005, the temporal distribution of PCG in Beijing Area is analyzed. The waveform characteristics are also investigated using the data of electric field change. The results show that from May to July there are more PCG happening than other seasons in Beijing Area. The PCG occupies 55.3% of all lightning events from March to May and from October to November, while the percentage of PCG is only 10.88% for the whole year. On the other hand, the distribution of PCG in Beijing also changes with time in a day, with a high frequency of PCG and a large percentage up to 16.2% during 15:00—21:00. It’s also found that the temporal distribution is inverse correlation between PCG and negative cloud to ground lightning (NCG) in a day. There is a decreasing tendency of PCG lightning with an increase of cloud to ground (CG) lightning. For most of PCG there is only one return stroke and the percentage of PCG with multiple return strokes is only 3.89%. The PCG with multiple return strokes mainly occurs in May and November and during 15:40—17:20 in a day.The waveform parameters and the characteristics of continuing current are given by statistics. The rising time of return stroke is between 5—28 μs, with a mean value of 11.55 μs. The time of slow front is between 2.8—23.6 μs with 9.41 μs on average. The ratio between the amplitude of slow front and the peak of return peak is 53%. The time of recovering to zero is 43.97 μs and the depth of the dip is 20.75%. The average value of return stroke peak after being normalized to 100 km is 13.66 V·m-1. Most of PCG contain continuing current process. The percentage of PCG with continuing current is 69.2%, 48.7% of which lead to long continuing current. The average lasting time of continuing current is 113 ms.

Yokoyama S, Honjo N, Yasuda Y , et al.

Causes of wind turbine blade damages due to lightning and future research target to get better protection measures

[C]. 2014 IEEE International Conference on Lightning Protection (ICLP), Shanghai, China, 2014: 823-830.

[本文引用: 2]

Peesapati V, Cotton I .

Lightning protection of wind turbines—A comparison of real lightning strike data and finite element lightning attachment analysis

[C]. IEEE International Conference on Sustainable Power Generation and Supply, 2009: 1-8.

[本文引用: 1]

Rachidi F, Rubinstein M, Montanya J , et al.

A Review of current issues in lightning protection of new-generation wind-turbine blades

[J]. IEEE Transactions on Industrial Electronics, 2008,55(6):2489-2496.

DOI:10.1109/TIE.2007.896443      URL     [本文引用: 1]

严晓建 .

我国海上风电开发投资及相关问题分析

[J]. 中国市场, 2010(15):15-17.

[本文引用: 1]

Yan Xiaojian .

Offshore wind power investment analysis in China

[J]. China Market, 2010(15):15-17.

[本文引用: 1]

李志刚, 郑峰, 肖斌 .

海岸滩涂风电场建设工程保障策略探讨

[J]. 中国工程科学, 2010(11):60-65.

URL     [本文引用: 1]

根据海岸滩涂和浅水海域风电场建设及运行维护工程保障的需求,提出了一系列的工程保障方案,主要包括:适应于潮上带滩涂风电场的系列道路构筑方案、适应于潮间带滩涂风电场的承压浮箱及浮箱栈桥保障方案、适应于潮下带5 m以上水深风电场的浅吃水自升式海上风电场工程平台以及风电场运行维护期间的两栖进入方案,并对这些方案的适应性、可行性及技术要点进行了探讨.提出的系列工程保障方案针对潮上带、潮间带至潮下带不同滩涂区域对施工工程技术的不同要求,以系列技术保障措施分段保障,较好地解决了海岸滩涂及浅水海域风电场建设的工程保障问题.

Li Zhigang, Zheng Feng, Xiao Bin .

Engineering support strategy research of the tideland wind farm construction

[J]. Engineering Sciences, 2010 ( 11):60-65.

URL     [本文引用: 1]

根据海岸滩涂和浅水海域风电场建设及运行维护工程保障的需求,提出了一系列的工程保障方案,主要包括:适应于潮上带滩涂风电场的系列道路构筑方案、适应于潮间带滩涂风电场的承压浮箱及浮箱栈桥保障方案、适应于潮下带5 m以上水深风电场的浅吃水自升式海上风电场工程平台以及风电场运行维护期间的两栖进入方案,并对这些方案的适应性、可行性及技术要点进行了探讨.提出的系列工程保障方案针对潮上带、潮间带至潮下带不同滩涂区域对施工工程技术的不同要求,以系列技术保障措施分段保障,较好地解决了海岸滩涂及浅水海域风电场建设的工程保障问题.

黄必清, 张毅, 易晓春 .

海上风电场运行维护系统

[J]. 清华大学学报(自然科学版), 2014(4):522-529.

[本文引用: 1]

Huang Biqing, Zhang Yi, Yi Xiaochun .

Operation and maintenance systems for offshore wind farms

[J]. Journal of Tsinghua University(Science and Technology), 2014(4):522-529.

[本文引用: 1]

IEC 62305—2.

Protection of Structures against Lightning-Part 2: Risk Management

[S]. 2006.

[本文引用: 1]

张小青 . 风电机组防雷与接地[M]. 北京: 中国电力出版社, 2009.

[本文引用: 1]

Madsen S F, Erichsen H V .

Improvements of numerical models to determine lightning attachment points on wind turbines

[C]. 2008 International Conference on Lightning Protection (ICLP), Uppsala, Sweden, 2008, 9c-6:1-11.

[本文引用: 1]

Megumu Miki, Toru Miki, Atsushi Wada , et al.

Observation of lightning flashed to wind turbines

[C]. 2010 International Conference on Lightning Protection (ICLP), Cagliari, Italy, 2010: 1-7.

[本文引用: 1]

Lo P M .

A simplified model for lightning exposure of wind turbines

[D]. McGill University, 2008.

[本文引用: 1]

Wang X H, Zhang X Q .

Calculation of electromag-netic induction inside a wind turbine tower struck by lightning

[J]. Wind Energy, 2010,13(7):615-625.

DOI:10.1002/we.382      URL     [本文引用: 1]

Radicevic B M, Savic M S .

Experimental research on the influence of wind turbine blade rotation on the characteristics of atmospheric discharges

[J]. IEEE Transactions on Energy Conversion, 2011,26(4):1181-1190.

DOI:10.1109/TEC.2011.2162240      URL     [本文引用: 1]

The experimental research, whose most important segments are described in this paper, is one of the first attempts to determine the influence of wind turbine blade rotation on likelihood of getting struck by lightning. The tests were conducted in the high-voltage laboratory, applying the up-and-down method for determination of the 50% flashover standard switching voltage. The impulse voltage waves were applied between the specially designed arching electrode and the blades of a reduced-size wind turbine model, driven by a frequency controlled motor. Two types of lightning protection systems and the case of absent protection system were examined. According to the theory of similarity this paper discusses the characteristics of direct atmospheric discharges for the following typical rotational speeds of the wind turbine: w = 0 r/min (when the wind turbine is idle), w = 250 r/min (for the winds of moderate strength), and w = 400 r/min (rated rotor speed).

Alonso M A, Irastorza D C .

Dynamic wind turbine lightning protection behaviour under strom conditions

[C]. 2008 International Conference on Lightning Protection (ICLP), Uppsala, Sweden, 2008, 9a-7:1-6.

[本文引用: 1]

Asakawa A, Shindo T, Yokoyama S , et al.

Direct lightning hits on wind turbines in winter season : lightning observation results for wind turbines at Nikaho wind park in winter

[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2010,5(1):14-20.

DOI:10.1002/tee.v5:1      URL     [本文引用: 1]

Sakurano H, Hashimoto M, Nakamura K .

Observation of winter lightning striking a wind power generation tower and a lightning tower

[C]. 2006 International Conference on Lightning Protection (ICLP), Kanazawa, Japan, 2006: 1522-1526.

[本文引用: 1]

Yoh Y, Shigeru Y .

Proposal of lightning damage classification to wind turbine blades

[C]. IEEE International Conference on Lightning, 2011: 368-371.

[本文引用: 1]

Scheibe K, Birk C .

Lightning research for offshore-wind farms in the North Sea

[C]. 2008 International Conference on Lightning Protection (ICLP), Uppsala, Sweden, 2008, 9c-7:1-7.

[本文引用: 1]

Vasa N J, Naka T , et al.

Experimental study on lightning attachment manner considering various typesof lightning protection measures on wind turbine blades

[C]. 2006 International Conference on Lightning Protection (ICLP), Kanazawa, Japan, 2006: 1483-1487.

[本文引用: 1]

Bagherian H, Karegar H K .

Effects of location, size and number of wind turbine receptors on blade lightning protection by voltage distribution analysis

[J]. International Conference on Advanced Power System Automation and Protection, 2011: 1343-1348.

[本文引用: 1]

Ayub A S, Siew W H, MacGregor S J .

Lightning protection of wind turbine blades—An alternative approach

[C]. IEEE International Conference on Lightning, 2011: 941-946.

[本文引用: 1]

Goda Y, Tanaka S, Ohtaka T .

Arc tests of wind turbine blades simulating high energy lightning strikes

[C]. 2008 International Conference on Lightning Protection (ICLP), Uppsala, Sweden, 2008, 9c-5:1-8.

[本文引用: 1]

Inoue K, Korematsu Y, Nakamura N , et al.

Study on damage-mechanism of wind turbine blades by lightning strike

[C]. 2006 International Conference on Lightning Protection (ICLP), Kanazawa, Japan, 2006: 1563-1566.

[本文引用: 1]

Kithil R .

Case study of lightning damage to wind turbine blade[R]. National Lightning Safety Institute (NLSI),

June 2008.

[本文引用: 1]

Ayub A S, Siew W H, MacGregor S J .

External lightning protection system for wind turbine blades-preliminary aerodynamic results

[C]. 2014 IEEE International Conference on Lightning Protection (ICLP). Shanghai, China, 2014: 386-391.

[本文引用: 1]

SathiesháKumar V, Vasa N J, Sarathi R .

Detecting salt deposition on a wind turbine blade using laser induced breakdown spectroscopy technique

[J]. Applied Physics A, 2013,112(1):149-153.

DOI:10.1007/s00339-012-7219-5      URL     [本文引用: 1]

王晓辉 .

风力发电机组雷电暂态效应的研究

[D]. 北京:北京交通大学, 2010.

[本文引用: 1]

Yamamoto K, Chikara T, Ametani A .

A study of transient magnetic fields in a nacelle of a wind turbine generator system due to lightning

[J]. IEEJ Transactions on Power and Energy, 2009,129:628-636.

DOI:10.1541/ieejpes.129.628      URL     [本文引用: 1]

Yoh Y, Toshiaki U .

FDTD transient analysis of ring earth electrode

[C]. Proceedings of the 41st IEEE International Universities Power Engineering Conference, UPEC'06, 2006,1:133-136.

[本文引用: 1]

Wang X H, Zhang X Q .

Modelling and simulation of lightning transients in wind turbine grounding systems

[J]. Journal of System Simulation, 2010,22(8):1805-1808.

DOI:10.1007/s00167-014-3045-y      URL     PMID:24817110      [本文引用: 1]

Although several anatomical landmarks have been proposed to obtain adequate femoral component alignment in total knee arthroplasty (TKA), there is still no consensus regarding the best way to correctly position the prosthetic component on the horizontal plane. A previous computed tomography (CT)-based study has demonstrated anatomical transepicondylar axis (aTEA) to be externally rotated relative to surgical transepicondylar axis (sTEA) of approximately 4.5°. In this study, it is described a new methodological approach to femoral component rotational positioning through the use of previously reported CT scan information and navigation.

Markovski B, Grcev L, Arnautovski-Toseva V .

Transient characteristics of wind turbine grounding

[C]. 2012 IEEE International Conference on Lightning Protection (ICLP), Vienna, Austria, 2012.

[本文引用: 1]

Ahmed M R, Ishii M .

Effectiveness of interconnection of wind turbine grounding influenced by interconnec-tion wire

[C]. 2012 IEEE International Conference on Lightning Protection (ICLP), Vienna, Austria, 2012.

[本文引用: 1]

/