基于多传感阵列的高压电缆缓冲层烧蚀缺陷检测方法

Detection Method for Ablation Defects in High-voltage Cable Buffer Layers Based on Multi-sensor Arrays

  • 摘要: 多传感阵列在电气设备的智能诊断领域中具有广泛的应用潜力。针对高压交联聚乙烯电缆缓冲层烧蚀故障频发的现象,提出一种基于多传感阵列的解决方案,利用对特征气体的检测实现对故障的早期预警和诊断。为提升诊断精度与计算效率,开发一种结合主成分分析(Principle component analysis,PCA)和科尔莫戈罗夫-阿诺德网络(Kolmogorov-Arnold networks,KAN)的深度学习模型(PCA-KAN),通过PCA进行数据增强,配合KAN网络的剪枝技术,显著降低了模型的参数量和计算复杂度。试验结果表明,PCA-KAN在测试集上的识别准确率达到98.26%,优于传统的深度学习方法,且具备高效的计算性能,参数量仅为240,适用于边缘计算环境。该系统不仅在高压电缆故障诊断中表现出色,还可广泛应用于开关柜局部放电检测和防火等工业物联网场景。

     

    Abstract: The multi-sensor array demonstrates substantial potential in the intelligent diagnostic analysis of electrical equipment. Addressing the recurrent issue of ablation faults in the insulating layers of high-voltage cross-linked polyethylene cables, this study introduces a novel solution based on a multi-sensor array, leveraging the detection of characteristic gases for early fault warning and diagnosis. To optimize diagnostic accuracy and computational efficiency, a deep learning model is developed, denoted as PCA-KAN, which integrates principal component analysis(PCA) with Kolmogorov-Arnold networks(KAN). PCA facilitates data augmentation, while the pruning technique within the KAN network effectively reduces both the model's parameter count and computational complexity. Experimental results reveal that the PCA-KAN model achieves a recognition accuracy of 98.26% on the test set, surpassing traditional deep learning approaches. Additionally, the model demonstrates remarkable computational efficiency, with only 240 parameters, rendering it well-suited for deployment in edge computing environments. This system not only excels in high-voltage cable fault diagnosis, but also offers broad applicability in industrial IoT applications, including partial discharge detection in switchgear and fire prevention.

     

/

返回文章
返回