基于MRAS的VIENNA整流器电感参数在线辨识

Inductance Parameter Identification of VIENNA Rectifier Based on MRAS

  • 摘要: 模型预测控制(Finite control set-model predictive control,FCS-MPC)作为一种高效的多目标非线性控制算法,可考虑多种约束条件,因此适用于强非线性的VIENNA整流器系统。然而,模型参数作为影响FCS-MPC控制精度的关键性因素之一,模型参数失配将直接影响网侧电流性能。为提高系统参数鲁棒性的同时改善传统电感观测器精度差的缺点,通过构建模型参数与并网性能的解析方程揭示了模型参数失配对并网电流的影响机理,提出了一种基于模型参考自适应(Model reference adaptive system,MRAS)的参数在线辨识方法。最后,通过与传统电感观测器的对比结果表明,所提MRAS辨识方法精度更高,静态误差更小。同时,从稳态、暂态、参数失配等多个维度表明了所提理论的有效性。

     

    Abstract: Finite control set-model predictive control(FCS-MPC), as an efficient multi-objective nonlinear control algorithm, can consider a variety of constraints, so it is suitable for the strongly nonlinear VIENNA rectifier system. However, as one of the key factors affecting the control performance of FCS-MPC, the mismatch of model parameters may directly affect the performance of the grid-current. To improve the robustness of the system parameters and improve the accuracy of the traditional inductance observer, the influence mechanism of the mismatch of model parameters on grid-current is revealed by constructing an analytical equation of model parameters and grid-current performance. Finally, the results of comparison with the traditional inductance observer show that the proposed MRAS identification method has higher precision and smaller static error. At the same time, the validity of the theory is demonstrated from the aspects of steady state, transient state and parameter mismatch.

     

/

返回文章
返回