基于CNN-BiLSTM-CBAM的波浪能发电功率短期预测模型研究

Research on Short-term Prediction Model of Wave Energy Power Generation Based on CNN-BiLSTM-CBAM

  • 摘要: 波浪能具有较大的波动性,使得波浪能发电系统并网运行时,会对电力系统的安全稳定运行造成严重影响,准确的预测波浪能发电功率对电力系统的实时调度与控制有着重要的作用。为提升波浪能发电功率预测精度,以阵列式(Floating heave-buoy array,F-HBA)波浪能发电装置为研究对象,提出基于CNN-BiLSTM-CBAM组合神经网络的波浪能发电功率预测模型,该模型包括2个子模块,分别为基于CNN-BiLSTM-CBAM组合神经网络的波浪因素预测模块和基于F-HBA的功率转换模块。首先对有效波高和波浪周期进行预测,然后将有效波高和波浪周期的预测值输入功率转换模型,最终得到预测的波浪能发电功率值。通过实际仿真算例验证了基于CNN-BiLSTM-CBAM组合神经网络的波浪能发电功率预测模型的准确性。

     

    Abstract: The large fluctuation of wave energy will seriously affect the safe and stable operation of the power system when the wave energy power generation system is connected to the grid. Accurate prediction of wave energy power generation plays an important role in the real-time dispatching and control of the power system. In order to improve the prediction accuracy of wave energy power generation, taking the floating heave-buoy array(F-HBA) wave energy power generation device as the research object, and a wave energy power generation power prediction model is proposed based on CNN-BiLSTM-CBAM composite neural network. The model includes two sub modules, namely, the wave factor prediction module based on CNN-BiLSTM-CBAM composite neural network and the power conversion module based on F-HBA. First, the significant wave height and wave period are predicted, and then the predicted values of significant wave height and wave period are put into the power conversion model to obtain the predicted wave energy power generation. The prediction accuracy of wave power generation power prediction model based on CNN-BiLSTM-CBAM combined neural network is verified through actual simulation examples.

     

/

返回文章
返回