基于数据驱动的多能互补微网鲁棒优化方法

Data-driven Robust Optimization Method for Multi Energy Complementary Microgrids

  • 摘要: 为了准确地描述新能源输出功率的波动性和随机性对多能互补微网系统运行的影响,提出了基于数据驱动的多能微网鲁棒优化方法。首先,在传统区间集合的基础上对新能源出力的不确定参数进行多面体集合建模,然后利用具有时空相关性的新能源出力历史数据建立椭球不确定集合,通过连接高维椭球顶点,建立了数据驱动的凸包多面体集合,接着通过放缩凸包集合更好地对不确定参数进行包络。进一步建立了基于数据驱动的多能互补微网鲁棒优化模型,并采用列与约束生成算法(Column and constraint generation,C&CG)对该模型进行求解。最后通过算例进行仿真对比,结果表明,基于数据驱动的多能互补微网鲁棒优化方法可以减少保守性,提高优化结果鲁棒性,证明了所提方法的有效性。

     

    Abstract: In order to accurately describe the impact of the fluctuation and randomness of new energy output power on the operation of integrated energy complementary microgrid systems, a data-driven robust optimization method for multi energy microgrids is proposed. Firstly, based on the traditional interval set, the uncertain parameters of new energy output are modeled using a polyhedral set. Then, an ellipsoidal uncertainty set is established using historical data of new energy output with spatiotemporal correlation. By connecting high-dimensional ellipsoidal vertices, a data-driven convex hull polyhedron set is established. Then, the uncertain parameters are better enveloped by scaling the convex hull set. A data-driven robust optimization model for multi energy complementary microgrids is further established, and the column and constraint generation algorithm(C&CG) is used to solve the model. Finally, simulation comparisons are conducted through examples, and the results show that the data-driven robust optimization method for multi energy complementary microgrids can reduce conservatism and improve the robustness of optimization results, demonstrating the effectiveness of the proposed method.

     

/

返回文章
返回