基于MMoE-CNN-Informer模型的电力系统多元负荷长短期时间序列预测

Long and Short-term Multivariate Load Forecasting Based on MMoE-CNN-Informer Model for Power Systems

  • 摘要: 随着用户侧用能的多样性以及能源的耦合性日益增加,多元负荷的预测对于地区调度的精细化管理至关重要。在保证短期多元负荷预测精度的同时,针对多元负荷较长期预测提出了一种基于MMoE-CNN-Informer的预测方案来提升负荷预测精度。首先使用卷积神经网络对多元负荷序列及其特征序列进行监督式特征提取,然后将特征输入(Multi-gate mixture-of-experts,MMoE)多任务模型学习多元负荷序列间的耦合强度,最后将学习结果输入各负荷Informer预测模型实现多元负荷较长时间的组合预测任务。以多元负荷数据集进行了试验,并与其他6种相关的预测方法进行了比较,证明了所提改进模型在多元负荷的长短期时间序列预测上存在一定的优势,在保证多元负荷短期预测精度的同时,提升了对于多元负荷长期预测的能力,体现了方案的有效性和可行性。

     

    Abstract: With the increasing coupling and diversity of energy use on the customer side, accurate multivariate load forecasting is crucial for fine-grained regional dispatch management. A predictive solution is proposed based on the MMoE-CNN-Informer model for longer-term multivariate load prediction while ensuring the accuracy of short-term multivariate load prediction. Firstly, a convolutional neural network is used for supervised feature extraction of multivariate load sequences and their feature sequences. The resulting features are then input into the multi-gate mixture-of-experts(MMoE) multi-task model to learn the coupling strength between multivariate load sequences. The results of this learning process are fed into each load Informer forecasting model to achieve the multivariate load longer-term forecasting task. Experiments are conducted using the multivariate load dataset and compared with six other related prediction methods. The results demonstrate that the proposed improved model has certain advantages in the long and short-term time series prediction of multivariate loads, and improves the ability of long-term prediction of multivariate loads while ensuring the accuracy of short-term prediction of multivariate loads, which reflects the effectiveness and feasibility of the scheme.

     

/

返回文章
返回