基于EMD-KPCA-LSTM与SVG控制的双馈风电系统次同步振荡抑制方法

Sub-synchronous Oscillation Suppression Method for DFIG Wind Power Systems Based on EMD-KPCA-LSTM and SVG Damping Control

  • 摘要: 静止无功发生器(Static var generator, SVG)凭借其快速动态响应特性,在抑制双馈风电系统并网的次同步振荡方面发挥了重要作用。然而,传统控制策略在应对系统复杂的非线性和时变特性时,仍存在一定的局限性。为此,提出一种基于经验模态分解(Empirical mode decomposition, EMD)、核主成分分析(Kernel principal component analysis, KPCA)、长短期记忆网络(Long short-term memory, LSTM)与SVG附加阻尼控制的次同步振荡抑制方法。首先,通过EMD提取系统的振荡特征,利用KPCA进行降维优化,进一步通过LSTM对系统的动态特性进行建模与预测,从而显著提高了预测精度。在此基础上,结合SVG的附加阻尼控制功能,实时调节SVG的控制信号,有效抑制次同步振荡,提升系统的稳定性。该方法的创新在于将信号处理技术与深度学习算法相结合,构建了一个高效的预测与控制框架,为传统控制策略提供了全新思路。最后,利用PSCAD进行仿真分析,验证了该方法的有效性,为高渗透率新能源电网的稳定运行提供了技术支持。

     

    Abstract: The static var generator(SVG), with its rapid dynamic response characteristics, plays a significant role in suppressing sub-synchronous oscillations during the grid integration of doubly-fed wind power systems. However, traditional control strategies still have certain limitations when dealing with the system’s complex nonlinear and time-varying behaviors. To address this, a sub-synchronous oscillation suppression method is proposed based on empirical mode decomposition(EMD), kernel principal component analysis(KPCA), long short-term memory(LSTM), and the additional damping control of SVG. First, the oscillatory features of the system are extracted through EMD, followed by dimensionality reduction optimization using KPCA. Then, the dynamic characteristics of the system are modeled and predicted using LSTM, significantly improving prediction accuracy. On this basis, the additional damping control function of SVG is utilized to adjust the control signals in real time, effectively suppressing sub-synchronous oscillations and enhancing system stability. The innovation of this proposed method lies in combining signal processing techniques with deep learning algorithms, constructing an efficient prediction and control framework, and providing a novel approach to traditional control strategies. Finally, simulation analysis using PSCAD validates the effectiveness of the proposed method, offering technical support for the stable operation of high-penetration renewable energy grids.

     

/

返回文章
返回