大数据驱动的离散制造车间生产过程智能管控方法研究

Big Data Driven Intelligent Production Control of Discrete Manufacturing Process

  • 摘要: 在智能制造背景下,离散制造企业对利用大数据技术提高车间生产管控水平提出了迫切的需求。研究大数据驱动的离散制造车间生产过程智能管控方法,在明确离散制造车间特点与管控需求的基础上,分析了传统方法的局限性和大数据方法的优势,进而提出大数据驱动的离散制造车间生产过程管控总体框架,以制造大数据的“采集-处理-分析-服务”为主线开展研究。在“进度预测-瓶颈发现-异常溯源-智能决策”的生产过程闭环管控机制中,分别提出:基于堆叠稀疏自编码机的生产进度在线预测技术,基于平行门控循环单元的生产瓶颈漂移发现技术,基于密度峰值-模糊C均值的生产异常溯源分析技术和基于多智能体强化学习的生产过程智能决策技术。最后,以某航空企业典型离散制造车间作为对象,对所提出的大数据分析与智能决策方法进行了原型系统开发和应用验证。

     

    Abstract: Under intelligent manufacturing era, there is pressing demands from discrete manufacturing enterprise to utilize big data (BD) technologies for enhancing the level of production management and control (PM & C). The BD driven intelligent PM & C in discrete manufacturing process is studied. Based on the determination of characteristics and demands for PM & C, the architecture of BD driven PM & C is firstly constructed, which the main flow is "collection-processing-analysis-service" of manufacturing BD. Based on the closed-loop mechanism "progress prediction-bottleneck discovery-anomaly tracing-decision making" for PM & C, the key technologies are respectively proposed, which are: "A stacked sparse auto-encoder model for production progress prediction", "The parallel gated recurrent units model for shifting bottleneck discovery", "The density peak-weighted fuzzy C-means method for anomaly tracing" and "The multi-agents reinforcement learning for production decision-making". Finally, an aircraft discrete manufacturing workshop is selected as the application scenario to verify the developed prototype system.

     

/

返回文章
返回